Step |
Hyp |
Ref |
Expression |
1 |
|
mbfmulc2.1 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
2 |
|
mbfmulc2.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
3 |
|
mbfmulc2.3 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
4 |
3 2
|
mbfdm2 |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
5 |
1
|
recld |
⊢ ( 𝜑 → ( ℜ ‘ 𝐶 ) ∈ ℝ ) |
6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐶 ) ∈ ℝ ) |
7 |
6
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐶 ) ∈ ℂ ) |
8 |
3 2
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
9 |
8
|
recld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
10 |
9
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
11 |
7 10
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ∈ ℂ ) |
12 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ∈ V ) |
13 |
|
fconstmpt |
⊢ ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) |
14 |
13
|
a1i |
⊢ ( 𝜑 → ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ) |
15 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) |
16 |
4 6 9 14 15
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ) ) |
17 |
1
|
imcld |
⊢ ( 𝜑 → ( ℑ ‘ 𝐶 ) ∈ ℝ ) |
18 |
17
|
renegcld |
⊢ ( 𝜑 → - ( ℑ ‘ 𝐶 ) ∈ ℝ ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℑ ‘ 𝐶 ) ∈ ℝ ) |
20 |
8
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
21 |
|
fconstmpt |
⊢ ( 𝐴 × { - ( ℑ ‘ 𝐶 ) } ) = ( 𝑥 ∈ 𝐴 ↦ - ( ℑ ‘ 𝐶 ) ) |
22 |
21
|
a1i |
⊢ ( 𝜑 → ( 𝐴 × { - ( ℑ ‘ 𝐶 ) } ) = ( 𝑥 ∈ 𝐴 ↦ - ( ℑ ‘ 𝐶 ) ) ) |
23 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) |
24 |
4 19 20 22 23
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐴 × { - ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
25 |
4 11 12 16 24
|
offval2 |
⊢ ( 𝜑 → ( ( ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) ∘f + ( ( 𝐴 × { - ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) + ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ) ) |
26 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐶 ) ∈ ℝ ) |
27 |
26
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐶 ) ∈ ℂ ) |
28 |
20
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) ∈ ℂ ) |
29 |
27 28
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
30 |
11 29
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) + - ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) = ( ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
31 |
27 28
|
mulneg1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) = - ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) |
32 |
31
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) + ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) = ( ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) + - ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
33 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
34 |
33 8
|
remuld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐶 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
35 |
30 32 34
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) + ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) = ( ℜ ‘ ( 𝐶 · 𝐵 ) ) ) |
36 |
35
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) + ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐶 · 𝐵 ) ) ) ) |
37 |
25 36
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) ∘f + ( ( 𝐴 × { - ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐶 · 𝐵 ) ) ) ) |
38 |
8
|
ismbfcn2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) ) ) |
39 |
3 38
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) ) |
40 |
39
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ) |
41 |
10
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) : 𝐴 ⟶ ℂ ) |
42 |
40 5 41
|
mbfmulc2re |
⊢ ( 𝜑 → ( ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) ∈ MblFn ) |
43 |
39
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) |
44 |
28
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) : 𝐴 ⟶ ℂ ) |
45 |
43 18 44
|
mbfmulc2re |
⊢ ( 𝜑 → ( ( 𝐴 × { - ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) ∈ MblFn ) |
46 |
42 45
|
mbfadd |
⊢ ( 𝜑 → ( ( ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) ∘f + ( ( 𝐴 × { - ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) ) ∈ MblFn ) |
47 |
37 46
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐶 · 𝐵 ) ) ) ∈ MblFn ) |
48 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ∈ V ) |
49 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ∈ V ) |
50 |
4 6 20 14 23
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
51 |
|
fconstmpt |
⊢ ( 𝐴 × { ( ℑ ‘ 𝐶 ) } ) = ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) |
52 |
51
|
a1i |
⊢ ( 𝜑 → ( 𝐴 × { ( ℑ ‘ 𝐶 ) } ) = ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ) |
53 |
4 26 9 52 15
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐴 × { ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ) ) |
54 |
4 48 49 50 53
|
offval2 |
⊢ ( 𝜑 → ( ( ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) ∘f + ( ( 𝐴 × { ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) |
55 |
33 8
|
immuld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ ( 𝐶 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ) ) |
56 |
55
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐶 · 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) |
57 |
54 56
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) ∘f + ( ( 𝐴 × { ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐶 · 𝐵 ) ) ) ) |
58 |
43 5 44
|
mbfmulc2re |
⊢ ( 𝜑 → ( ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) ∈ MblFn ) |
59 |
40 17 41
|
mbfmulc2re |
⊢ ( 𝜑 → ( ( 𝐴 × { ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) ∈ MblFn ) |
60 |
58 59
|
mbfadd |
⊢ ( 𝜑 → ( ( ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) ∘f + ( ( 𝐴 × { ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) ) ∈ MblFn ) |
61 |
57 60
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐶 · 𝐵 ) ) ) ∈ MblFn ) |
62 |
33 8
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 · 𝐵 ) ∈ ℂ ) |
63 |
62
|
ismbfcn2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐶 · 𝐵 ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐶 · 𝐵 ) ) ) ∈ MblFn ) ) ) |
64 |
47 61 63
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∈ MblFn ) |