| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfmulc2.1 | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 2 |  | mbfmulc2.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 3 |  | mbfmulc2.3 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 4 | 3 2 | mbfdm2 | ⊢ ( 𝜑  →  𝐴  ∈  dom  vol ) | 
						
							| 5 | 1 | recld | ⊢ ( 𝜑  →  ( ℜ ‘ 𝐶 )  ∈  ℝ ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ 𝐶 )  ∈  ℝ ) | 
						
							| 7 | 6 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 8 | 3 2 | mbfmptcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 9 | 8 | recld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 10 | 9 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 11 | 7 10 | mulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( ℜ ‘ 𝐶 )  ·  ( ℜ ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 12 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( - ( ℑ ‘ 𝐶 )  ·  ( ℑ ‘ 𝐵 ) )  ∈  V ) | 
						
							| 13 |  | fconstmpt | ⊢ ( 𝐴  ×  { ( ℜ ‘ 𝐶 ) } )  =  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐶 ) ) | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  ( 𝐴  ×  { ( ℜ ‘ 𝐶 ) } )  =  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐶 ) ) ) | 
						
							| 15 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) ) ) | 
						
							| 16 | 4 6 9 14 15 | offval2 | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { ( ℜ ‘ 𝐶 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) ) )  =  ( 𝑥  ∈  𝐴  ↦  ( ( ℜ ‘ 𝐶 )  ·  ( ℜ ‘ 𝐵 ) ) ) ) | 
						
							| 17 | 1 | imcld | ⊢ ( 𝜑  →  ( ℑ ‘ 𝐶 )  ∈  ℝ ) | 
						
							| 18 | 17 | renegcld | ⊢ ( 𝜑  →  - ( ℑ ‘ 𝐶 )  ∈  ℝ ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - ( ℑ ‘ 𝐶 )  ∈  ℝ ) | 
						
							| 20 | 8 | imcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 21 |  | fconstmpt | ⊢ ( 𝐴  ×  { - ( ℑ ‘ 𝐶 ) } )  =  ( 𝑥  ∈  𝐴  ↦  - ( ℑ ‘ 𝐶 ) ) | 
						
							| 22 | 21 | a1i | ⊢ ( 𝜑  →  ( 𝐴  ×  { - ( ℑ ‘ 𝐶 ) } )  =  ( 𝑥  ∈  𝐴  ↦  - ( ℑ ‘ 𝐶 ) ) ) | 
						
							| 23 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) ) ) | 
						
							| 24 | 4 19 20 22 23 | offval2 | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { - ( ℑ ‘ 𝐶 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) ) )  =  ( 𝑥  ∈  𝐴  ↦  ( - ( ℑ ‘ 𝐶 )  ·  ( ℑ ‘ 𝐵 ) ) ) ) | 
						
							| 25 | 4 11 12 16 24 | offval2 | ⊢ ( 𝜑  →  ( ( ( 𝐴  ×  { ( ℜ ‘ 𝐶 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) ) )  ∘f   +  ( ( 𝐴  ×  { - ( ℑ ‘ 𝐶 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) ) ) )  =  ( 𝑥  ∈  𝐴  ↦  ( ( ( ℜ ‘ 𝐶 )  ·  ( ℜ ‘ 𝐵 ) )  +  ( - ( ℑ ‘ 𝐶 )  ·  ( ℑ ‘ 𝐵 ) ) ) ) ) | 
						
							| 26 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ 𝐶 )  ∈  ℝ ) | 
						
							| 27 | 26 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 28 | 20 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 29 | 27 28 | mulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( ℑ ‘ 𝐶 )  ·  ( ℑ ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 30 | 11 29 | negsubd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( ( ℜ ‘ 𝐶 )  ·  ( ℜ ‘ 𝐵 ) )  +  - ( ( ℑ ‘ 𝐶 )  ·  ( ℑ ‘ 𝐵 ) ) )  =  ( ( ( ℜ ‘ 𝐶 )  ·  ( ℜ ‘ 𝐵 ) )  −  ( ( ℑ ‘ 𝐶 )  ·  ( ℑ ‘ 𝐵 ) ) ) ) | 
						
							| 31 | 27 28 | mulneg1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( - ( ℑ ‘ 𝐶 )  ·  ( ℑ ‘ 𝐵 ) )  =  - ( ( ℑ ‘ 𝐶 )  ·  ( ℑ ‘ 𝐵 ) ) ) | 
						
							| 32 | 31 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( ( ℜ ‘ 𝐶 )  ·  ( ℜ ‘ 𝐵 ) )  +  ( - ( ℑ ‘ 𝐶 )  ·  ( ℑ ‘ 𝐵 ) ) )  =  ( ( ( ℜ ‘ 𝐶 )  ·  ( ℜ ‘ 𝐵 ) )  +  - ( ( ℑ ‘ 𝐶 )  ·  ( ℑ ‘ 𝐵 ) ) ) ) | 
						
							| 33 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  ℂ ) | 
						
							| 34 | 33 8 | remuld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ ( 𝐶  ·  𝐵 ) )  =  ( ( ( ℜ ‘ 𝐶 )  ·  ( ℜ ‘ 𝐵 ) )  −  ( ( ℑ ‘ 𝐶 )  ·  ( ℑ ‘ 𝐵 ) ) ) ) | 
						
							| 35 | 30 32 34 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( ( ℜ ‘ 𝐶 )  ·  ( ℜ ‘ 𝐵 ) )  +  ( - ( ℑ ‘ 𝐶 )  ·  ( ℑ ‘ 𝐵 ) ) )  =  ( ℜ ‘ ( 𝐶  ·  𝐵 ) ) ) | 
						
							| 36 | 35 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ( ( ℜ ‘ 𝐶 )  ·  ( ℜ ‘ 𝐵 ) )  +  ( - ( ℑ ‘ 𝐶 )  ·  ( ℑ ‘ 𝐵 ) ) ) )  =  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ ( 𝐶  ·  𝐵 ) ) ) ) | 
						
							| 37 | 25 36 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝐴  ×  { ( ℜ ‘ 𝐶 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) ) )  ∘f   +  ( ( 𝐴  ×  { - ( ℑ ‘ 𝐶 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) ) ) )  =  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ ( 𝐶  ·  𝐵 ) ) ) ) | 
						
							| 38 | 8 | ismbfcn2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn  ↔  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  MblFn ) ) ) | 
						
							| 39 | 3 38 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  MblFn ) ) | 
						
							| 40 | 39 | simpld | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  MblFn ) | 
						
							| 41 | 10 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) ) : 𝐴 ⟶ ℂ ) | 
						
							| 42 | 40 5 41 | mbfmulc2re | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { ( ℜ ‘ 𝐶 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) ) )  ∈  MblFn ) | 
						
							| 43 | 39 | simprd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  MblFn ) | 
						
							| 44 | 28 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) ) : 𝐴 ⟶ ℂ ) | 
						
							| 45 | 43 18 44 | mbfmulc2re | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { - ( ℑ ‘ 𝐶 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) ) )  ∈  MblFn ) | 
						
							| 46 | 42 45 | mbfadd | ⊢ ( 𝜑  →  ( ( ( 𝐴  ×  { ( ℜ ‘ 𝐶 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) ) )  ∘f   +  ( ( 𝐴  ×  { - ( ℑ ‘ 𝐶 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) ) ) )  ∈  MblFn ) | 
						
							| 47 | 37 46 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ ( 𝐶  ·  𝐵 ) ) )  ∈  MblFn ) | 
						
							| 48 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( ℜ ‘ 𝐶 )  ·  ( ℑ ‘ 𝐵 ) )  ∈  V ) | 
						
							| 49 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( ℑ ‘ 𝐶 )  ·  ( ℜ ‘ 𝐵 ) )  ∈  V ) | 
						
							| 50 | 4 6 20 14 23 | offval2 | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { ( ℜ ‘ 𝐶 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) ) )  =  ( 𝑥  ∈  𝐴  ↦  ( ( ℜ ‘ 𝐶 )  ·  ( ℑ ‘ 𝐵 ) ) ) ) | 
						
							| 51 |  | fconstmpt | ⊢ ( 𝐴  ×  { ( ℑ ‘ 𝐶 ) } )  =  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐶 ) ) | 
						
							| 52 | 51 | a1i | ⊢ ( 𝜑  →  ( 𝐴  ×  { ( ℑ ‘ 𝐶 ) } )  =  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐶 ) ) ) | 
						
							| 53 | 4 26 9 52 15 | offval2 | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { ( ℑ ‘ 𝐶 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) ) )  =  ( 𝑥  ∈  𝐴  ↦  ( ( ℑ ‘ 𝐶 )  ·  ( ℜ ‘ 𝐵 ) ) ) ) | 
						
							| 54 | 4 48 49 50 53 | offval2 | ⊢ ( 𝜑  →  ( ( ( 𝐴  ×  { ( ℜ ‘ 𝐶 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) ) )  ∘f   +  ( ( 𝐴  ×  { ( ℑ ‘ 𝐶 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) ) ) )  =  ( 𝑥  ∈  𝐴  ↦  ( ( ( ℜ ‘ 𝐶 )  ·  ( ℑ ‘ 𝐵 ) )  +  ( ( ℑ ‘ 𝐶 )  ·  ( ℜ ‘ 𝐵 ) ) ) ) ) | 
						
							| 55 | 33 8 | immuld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ ( 𝐶  ·  𝐵 ) )  =  ( ( ( ℜ ‘ 𝐶 )  ·  ( ℑ ‘ 𝐵 ) )  +  ( ( ℑ ‘ 𝐶 )  ·  ( ℜ ‘ 𝐵 ) ) ) ) | 
						
							| 56 | 55 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ ( 𝐶  ·  𝐵 ) ) )  =  ( 𝑥  ∈  𝐴  ↦  ( ( ( ℜ ‘ 𝐶 )  ·  ( ℑ ‘ 𝐵 ) )  +  ( ( ℑ ‘ 𝐶 )  ·  ( ℜ ‘ 𝐵 ) ) ) ) ) | 
						
							| 57 | 54 56 | eqtr4d | ⊢ ( 𝜑  →  ( ( ( 𝐴  ×  { ( ℜ ‘ 𝐶 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) ) )  ∘f   +  ( ( 𝐴  ×  { ( ℑ ‘ 𝐶 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) ) ) )  =  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ ( 𝐶  ·  𝐵 ) ) ) ) | 
						
							| 58 | 43 5 44 | mbfmulc2re | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { ( ℜ ‘ 𝐶 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) ) )  ∈  MblFn ) | 
						
							| 59 | 40 17 41 | mbfmulc2re | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { ( ℑ ‘ 𝐶 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) ) )  ∈  MblFn ) | 
						
							| 60 | 58 59 | mbfadd | ⊢ ( 𝜑  →  ( ( ( 𝐴  ×  { ( ℜ ‘ 𝐶 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) ) )  ∘f   +  ( ( 𝐴  ×  { ( ℑ ‘ 𝐶 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) ) ) )  ∈  MblFn ) | 
						
							| 61 | 57 60 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ ( 𝐶  ·  𝐵 ) ) )  ∈  MblFn ) | 
						
							| 62 | 33 8 | mulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐶  ·  𝐵 )  ∈  ℂ ) | 
						
							| 63 | 62 | ismbfcn2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( 𝐶  ·  𝐵 ) )  ∈  MblFn  ↔  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ ( 𝐶  ·  𝐵 ) ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ ( 𝐶  ·  𝐵 ) ) )  ∈  MblFn ) ) ) | 
						
							| 64 | 47 61 63 | mpbir2and | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐶  ·  𝐵 ) )  ∈  MblFn ) |