Step |
Hyp |
Ref |
Expression |
1 |
|
mbfmulc2re.1 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
2 |
|
mbfmulc2re.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
mbfmulc2lem.3 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) |
4 |
|
remulcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
5 |
4
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
6 |
|
fconst6g |
⊢ ( 𝐵 ∈ ℝ → ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ ℝ ) |
7 |
2 6
|
syl |
⊢ ( 𝜑 → ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ ℝ ) |
8 |
3
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
9 |
|
mbfdm |
⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) |
10 |
1 9
|
syl |
⊢ ( 𝜑 → dom 𝐹 ∈ dom vol ) |
11 |
8 10
|
eqeltrrd |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
12 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
13 |
5 7 3 11 11 12
|
off |
⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) : 𝐴 ⟶ ℝ ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) : 𝐴 ⟶ ℝ ) |
15 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → 𝐴 ∈ dom vol ) |
16 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝑦 ∈ ℝ ) |
17 |
16
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝑦 ∈ ℝ* ) |
18 |
|
elioopnf |
⊢ ( 𝑦 ∈ ℝ* → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ) ) ) |
19 |
17 18
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ) ) ) |
20 |
13
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ) |
21 |
20
|
ad2ant2rl |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ) |
22 |
21
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ) ) ) |
23 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
24 |
23
|
ad2ant2rl |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
25 |
24
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) ) |
26 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝑧 ∈ 𝐴 ) |
27 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐴 ∈ dom vol ) |
28 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐵 ∈ ℝ ) |
29 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐹 : 𝐴 ⟶ ℝ ) |
30 |
29
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐹 Fn 𝐴 ) |
31 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
32 |
27 28 30 31
|
ofc1 |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) |
33 |
26 32
|
mpdan |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) |
34 |
33
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ↔ 𝑦 < ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
35 |
33 21
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
36 |
16 35
|
ltnegd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ↔ - ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < - 𝑦 ) ) |
37 |
28
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐵 ∈ ℂ ) |
38 |
24
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
39 |
37 38
|
mulneg1d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( - 𝐵 · ( 𝐹 ‘ 𝑧 ) ) = - ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) |
40 |
39
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( - 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < - 𝑦 ↔ - ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < - 𝑦 ) ) |
41 |
16
|
renegcld |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → - 𝑦 ∈ ℝ ) |
42 |
28
|
renegcld |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → - 𝐵 ∈ ℝ ) |
43 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐵 < 0 ) |
44 |
28
|
lt0neg1d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝐵 < 0 ↔ 0 < - 𝐵 ) ) |
45 |
43 44
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 0 < - 𝐵 ) |
46 |
|
ltmuldiv2 |
⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ - 𝑦 ∈ ℝ ∧ ( - 𝐵 ∈ ℝ ∧ 0 < - 𝐵 ) ) → ( ( - 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < - 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) < ( - 𝑦 / - 𝐵 ) ) ) |
47 |
24 41 42 45 46
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( - 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < - 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) < ( - 𝑦 / - 𝐵 ) ) ) |
48 |
36 40 47
|
3bitr2rd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) < ( - 𝑦 / - 𝐵 ) ↔ 𝑦 < ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
49 |
16
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝑦 ∈ ℂ ) |
50 |
43
|
lt0ne0d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐵 ≠ 0 ) |
51 |
49 37 50
|
div2negd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( - 𝑦 / - 𝐵 ) = ( 𝑦 / 𝐵 ) ) |
52 |
51
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) < ( - 𝑦 / - 𝐵 ) ↔ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) |
53 |
34 48 52
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) |
54 |
16 28 50
|
redivcld |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 / 𝐵 ) ∈ ℝ ) |
55 |
54
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 / 𝐵 ) ∈ ℝ* ) |
56 |
|
elioomnf |
⊢ ( ( 𝑦 / 𝐵 ) ∈ ℝ* → ( ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) ) |
57 |
55 56
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) ) |
58 |
25 53 57
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) |
59 |
19 22 58
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) |
60 |
59
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) |
61 |
60
|
pm5.32da |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) ) |
62 |
13
|
ffnd |
⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) Fn 𝐴 ) |
63 |
62
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) Fn 𝐴 ) |
64 |
|
elpreima |
⊢ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) Fn 𝐴 → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) |
65 |
63 64
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) |
66 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
67 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → 𝐹 Fn 𝐴 ) |
68 |
|
elpreima |
⊢ ( 𝐹 Fn 𝐴 → ( 𝑧 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) ) |
69 |
67 68
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) ) |
70 |
61 65 69
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) ↔ 𝑧 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) ) |
71 |
70
|
eqrdv |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) = ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) |
72 |
|
mbfima |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ∈ dom vol ) |
73 |
1 3 72
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ∈ dom vol ) |
74 |
73
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ∈ dom vol ) |
75 |
71 74
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) ∈ dom vol ) |
76 |
|
elioomnf |
⊢ ( 𝑦 ∈ ℝ* → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ) ) ) |
77 |
17 76
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ) ) ) |
78 |
21
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ) ) ) |
79 |
24
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ) ) ) |
80 |
33
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ↔ ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ) ) |
81 |
39
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( - 𝑦 < ( - 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ↔ - 𝑦 < - ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
82 |
51
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( - 𝑦 / - 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ) ) |
83 |
|
ltdivmul |
⊢ ( ( - 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( - 𝐵 ∈ ℝ ∧ 0 < - 𝐵 ) ) → ( ( - 𝑦 / - 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ - 𝑦 < ( - 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
84 |
41 24 42 45 83
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( - 𝑦 / - 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ - 𝑦 < ( - 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
85 |
82 84
|
bitr3d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ - 𝑦 < ( - 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
86 |
35 16
|
ltnegd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ↔ - 𝑦 < - ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
87 |
81 85 86
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ) ) |
88 |
80 87
|
bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ↔ ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ) ) |
89 |
|
elioopnf |
⊢ ( ( 𝑦 / 𝐵 ) ∈ ℝ* → ( ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ) ) ) |
90 |
55 89
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ) ) ) |
91 |
79 88 90
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) |
92 |
77 78 91
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) |
93 |
92
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) |
94 |
93
|
pm5.32da |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) ) |
95 |
|
elpreima |
⊢ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) Fn 𝐴 → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) |
96 |
63 95
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) |
97 |
|
elpreima |
⊢ ( 𝐹 Fn 𝐴 → ( 𝑧 ∈ ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) ) |
98 |
67 97
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) ) |
99 |
94 96 98
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) ↔ 𝑧 ∈ ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) ) |
100 |
99
|
eqrdv |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) = ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) |
101 |
|
mbfima |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ∈ dom vol ) |
102 |
1 3 101
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ∈ dom vol ) |
103 |
102
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ∈ dom vol ) |
104 |
100 103
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) |
105 |
14 15 75 104
|
ismbf2d |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ∈ MblFn ) |
106 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → 𝐴 ∈ dom vol ) |
107 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → 𝐹 : 𝐴 ⟶ ℝ ) |
108 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → 𝐵 = 0 ) |
109 |
|
0cn |
⊢ 0 ∈ ℂ |
110 |
108 109
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → 𝐵 ∈ ℂ ) |
111 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → 0 ∈ ℂ ) |
112 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐵 = 0 ) ∧ 𝑥 ∈ ℝ ) → 𝐵 = 0 ) |
113 |
112
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝐵 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( 𝐵 · 𝑥 ) = ( 0 · 𝑥 ) ) |
114 |
|
mul02lem2 |
⊢ ( 𝑥 ∈ ℝ → ( 0 · 𝑥 ) = 0 ) |
115 |
114
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐵 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( 0 · 𝑥 ) = 0 ) |
116 |
113 115
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐵 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( 𝐵 · 𝑥 ) = 0 ) |
117 |
106 107 110 111 116
|
caofid2 |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) = ( 𝐴 × { 0 } ) ) |
118 |
|
mbfconst |
⊢ ( ( 𝐴 ∈ dom vol ∧ 0 ∈ ℂ ) → ( 𝐴 × { 0 } ) ∈ MblFn ) |
119 |
106 109 118
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → ( 𝐴 × { 0 } ) ∈ MblFn ) |
120 |
117 119
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ∈ MblFn ) |
121 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) : 𝐴 ⟶ ℝ ) |
122 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → 𝐴 ∈ dom vol ) |
123 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝑦 ∈ ℝ ) |
124 |
123
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝑦 ∈ ℝ* ) |
125 |
124 18
|
syl |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ) ) ) |
126 |
20
|
ad2ant2rl |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ) |
127 |
126
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ) ) ) |
128 |
23
|
ad2ant2rl |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
129 |
128
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ) ) ) |
130 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
131 |
11 2 66 130
|
ofc1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) |
132 |
131
|
ad2ant2rl |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) |
133 |
132
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ↔ 𝑦 < ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
134 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐵 ∈ ℝ ) |
135 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 0 < 𝐵 ) |
136 |
|
ltdivmul |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ 𝑦 < ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
137 |
123 128 134 135 136
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ 𝑦 < ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
138 |
133 137
|
bitr4d |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ↔ ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ) ) |
139 |
134 135
|
elrpd |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐵 ∈ ℝ+ ) |
140 |
123 139
|
rerpdivcld |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 / 𝐵 ) ∈ ℝ ) |
141 |
140
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 / 𝐵 ) ∈ ℝ* ) |
142 |
141 89
|
syl |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ) ) ) |
143 |
129 138 142
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) |
144 |
125 127 143
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) |
145 |
144
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) |
146 |
145
|
pm5.32da |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) ) |
147 |
62
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) Fn 𝐴 ) |
148 |
147 64
|
syl |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) |
149 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → 𝐹 Fn 𝐴 ) |
150 |
149 97
|
syl |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) ) |
151 |
146 148 150
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) ↔ 𝑧 ∈ ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) ) |
152 |
151
|
eqrdv |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) = ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) |
153 |
102
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ∈ dom vol ) |
154 |
152 153
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) ∈ dom vol ) |
155 |
124 76
|
syl |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ) ) ) |
156 |
126
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ) ) ) |
157 |
|
ltmuldiv2 |
⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) |
158 |
128 123 134 135 157
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) |
159 |
132
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ↔ ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ) ) |
160 |
141 56
|
syl |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) ) |
161 |
128 160
|
mpbirand |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ↔ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) |
162 |
158 159 161
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) |
163 |
155 156 162
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) |
164 |
163
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) |
165 |
164
|
pm5.32da |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) ) |
166 |
147 95
|
syl |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) |
167 |
149 68
|
syl |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) ) |
168 |
165 166 167
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) ↔ 𝑧 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) ) |
169 |
168
|
eqrdv |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) = ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) |
170 |
73
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ∈ dom vol ) |
171 |
169 170
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) |
172 |
121 122 154 171
|
ismbf2d |
⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ∈ MblFn ) |
173 |
|
0re |
⊢ 0 ∈ ℝ |
174 |
|
lttri4 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵 ) ) |
175 |
2 173 174
|
sylancl |
⊢ ( 𝜑 → ( 𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵 ) ) |
176 |
105 120 172 175
|
mpjao3dan |
⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ∈ MblFn ) |