Step |
Hyp |
Ref |
Expression |
1 |
|
mbfmulc2re.1 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
2 |
|
mbfmulc2re.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
mbfmulc2re.3 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
4 |
3
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
5 |
1
|
dmexd |
⊢ ( 𝜑 → dom 𝐹 ∈ V ) |
6 |
4 5
|
eqeltrrd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
7 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
8 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
9 |
|
fconstmpt |
⊢ ( 𝐴 × { 𝐵 } ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
10 |
9
|
a1i |
⊢ ( 𝜑 → ( 𝐴 × { 𝐵 } ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
11 |
3
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
12 |
6 7 8 10 11
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ) |
13 |
7 8
|
remul2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝐵 · ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
14 |
13
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
15 |
8
|
recld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
16 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
17 |
6 7 15 10 16
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
18 |
14 17
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ( 𝐴 × { 𝐵 } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
19 |
11 1
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ) |
20 |
8
|
ismbfcn2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) ) ) |
21 |
19 20
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) ) |
22 |
21
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) |
23 |
15
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) : 𝐴 ⟶ ℝ ) |
24 |
22 2 23
|
mbfmulc2lem |
⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
25 |
18 24
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
26 |
7 8
|
immul2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝐵 · ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
27 |
26
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
28 |
8
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
29 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
30 |
6 7 28 10 29
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
31 |
27 30
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ( 𝐴 × { 𝐵 } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
32 |
21
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) |
33 |
28
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) : 𝐴 ⟶ ℝ ) |
34 |
32 2 33
|
mbfmulc2lem |
⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
35 |
31 34
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
36 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
38 |
37 8
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
39 |
38
|
ismbfcn2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ MblFn ) ) ) |
40 |
25 35 39
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) |
41 |
12 40
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ∈ MblFn ) |