Step |
Hyp |
Ref |
Expression |
1 |
|
mbfmul.1 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
2 |
|
mbfmul.2 |
⊢ ( 𝜑 → 𝐺 ∈ MblFn ) |
3 |
|
mbfmul.3 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) |
4 |
|
mbfmul.4 |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ ℝ ) |
5 |
1 3
|
mbfi1flim |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ) |
6 |
2 4
|
mbfi1flim |
⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) |
7 |
|
exdistrv |
⊢ ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ↔ ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ) |
8 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ) → 𝐹 ∈ MblFn ) |
9 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ) → 𝐺 ∈ MblFn ) |
10 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ) → 𝐹 : 𝐴 ⟶ ℝ ) |
11 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ) → 𝐺 : 𝐴 ⟶ ℝ ) |
12 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ) → 𝑓 : ℕ ⟶ dom ∫1 ) |
13 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ) → ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) |
15 |
14
|
mpteq2dv |
⊢ ( 𝑦 = 𝑥 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
16 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑚 ) ) |
17 |
16
|
fveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑓 ‘ 𝑚 ) ‘ 𝑥 ) ) |
18 |
17
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑚 ) ‘ 𝑥 ) ) |
19 |
15 18
|
eqtrdi |
⊢ ( 𝑦 = 𝑥 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
20 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
21 |
19 20
|
breq12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝑚 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑚 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
22 |
21
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑚 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑚 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) |
23 |
13 22
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑚 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑚 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) |
24 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ) → 𝑔 : ℕ ⟶ dom ∫1 ) |
25 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ) → ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) |
26 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) |
27 |
26
|
mpteq2dv |
⊢ ( 𝑦 = 𝑥 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
28 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑔 ‘ 𝑛 ) = ( 𝑔 ‘ 𝑚 ) ) |
29 |
28
|
fveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑔 ‘ 𝑚 ) ‘ 𝑥 ) ) |
30 |
29
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ‘ 𝑥 ) ) |
31 |
27 30
|
eqtrdi |
⊢ ( 𝑦 = 𝑥 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
32 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑥 ) ) |
33 |
31 32
|
breq12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ↔ ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) |
34 |
33
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) |
35 |
25 34
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) |
36 |
8 9 10 11 12 23 24 35
|
mbfmullem2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐹 ∘f · 𝐺 ) ∈ MblFn ) |
37 |
36
|
ex |
⊢ ( 𝜑 → ( ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ∘f · 𝐺 ) ∈ MblFn ) ) |
38 |
37
|
exlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ∘f · 𝐺 ) ∈ MblFn ) ) |
39 |
7 38
|
syl5bir |
⊢ ( 𝜑 → ( ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ∘f · 𝐺 ) ∈ MblFn ) ) |
40 |
5 6 39
|
mp2and |
⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) ∈ MblFn ) |