| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfmul.1 | ⊢ ( 𝜑  →  𝐹  ∈  MblFn ) | 
						
							| 2 |  | mbfmul.2 | ⊢ ( 𝜑  →  𝐺  ∈  MblFn ) | 
						
							| 3 |  | mbfmul.3 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℝ ) | 
						
							| 4 |  | mbfmul.4 | ⊢ ( 𝜑  →  𝐺 : 𝐴 ⟶ ℝ ) | 
						
							| 5 | 1 3 | mbfi1flim | ⊢ ( 𝜑  →  ∃ 𝑓 ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 6 | 2 4 | mbfi1flim | ⊢ ( 𝜑  →  ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 7 |  | exdistrv | ⊢ ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐺 ‘ 𝑦 ) ) )  ↔  ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) )  ∧  ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐺 ‘ 𝑦 ) ) ) ) | 
						
							| 8 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐺 ‘ 𝑦 ) ) ) )  →  𝐹  ∈  MblFn ) | 
						
							| 9 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐺 ‘ 𝑦 ) ) ) )  →  𝐺  ∈  MblFn ) | 
						
							| 10 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐺 ‘ 𝑦 ) ) ) )  →  𝐹 : 𝐴 ⟶ ℝ ) | 
						
							| 11 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐺 ‘ 𝑦 ) ) ) )  →  𝐺 : 𝐴 ⟶ ℝ ) | 
						
							| 12 |  | simprll | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐺 ‘ 𝑦 ) ) ) )  →  𝑓 : ℕ ⟶ dom  ∫1 ) | 
						
							| 13 |  | simprlr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐺 ‘ 𝑦 ) ) ) )  →  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 )  =  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 15 | 14 | mpteq2dv | ⊢ ( 𝑦  =  𝑥  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑓 ‘ 𝑛 )  =  ( 𝑓 ‘ 𝑚 ) ) | 
						
							| 17 | 16 | fveq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝑓 ‘ 𝑚 ) ‘ 𝑥 ) ) | 
						
							| 18 | 17 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑚 ) ‘ 𝑥 ) ) | 
						
							| 19 | 15 18 | eqtrdi | ⊢ ( 𝑦  =  𝑥  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑚 ) ‘ 𝑥 ) ) ) | 
						
							| 20 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 21 | 19 20 | breq12d | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑚 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 22 | 21 | rspccva | ⊢ ( ( ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑚 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 23 | 13 22 | sylan | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐺 ‘ 𝑦 ) ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑚 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 24 |  | simprrl | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐺 ‘ 𝑦 ) ) ) )  →  𝑔 : ℕ ⟶ dom  ∫1 ) | 
						
							| 25 |  | simprrr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐺 ‘ 𝑦 ) ) ) )  →  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 26 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 )  =  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 27 | 26 | mpteq2dv | ⊢ ( 𝑦  =  𝑥  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 28 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑔 ‘ 𝑛 )  =  ( 𝑔 ‘ 𝑚 ) ) | 
						
							| 29 | 28 | fveq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝑔 ‘ 𝑚 ) ‘ 𝑥 ) ) | 
						
							| 30 | 29 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑚 ) ‘ 𝑥 ) ) | 
						
							| 31 | 27 30 | eqtrdi | ⊢ ( 𝑦  =  𝑥  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑚 ) ‘ 𝑥 ) ) ) | 
						
							| 32 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 33 | 31 32 | breq12d | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐺 ‘ 𝑦 )  ↔  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑚 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 34 | 33 | rspccva | ⊢ ( ( ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐺 ‘ 𝑦 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑚 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 35 | 25 34 | sylan | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐺 ‘ 𝑦 ) ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑚 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 36 | 8 9 10 11 12 23 24 35 | mbfmullem2 | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐺 ‘ 𝑦 ) ) ) )  →  ( 𝐹  ∘f   ·  𝐺 )  ∈  MblFn ) | 
						
							| 37 | 36 | ex | ⊢ ( 𝜑  →  ( ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐺 ‘ 𝑦 ) ) )  →  ( 𝐹  ∘f   ·  𝐺 )  ∈  MblFn ) ) | 
						
							| 38 | 37 | exlimdvv | ⊢ ( 𝜑  →  ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐺 ‘ 𝑦 ) ) )  →  ( 𝐹  ∘f   ·  𝐺 )  ∈  MblFn ) ) | 
						
							| 39 | 7 38 | biimtrrid | ⊢ ( 𝜑  →  ( ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) )  ∧  ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐺 ‘ 𝑦 ) ) )  →  ( 𝐹  ∘f   ·  𝐺 )  ∈  MblFn ) ) | 
						
							| 40 | 5 6 39 | mp2and | ⊢ ( 𝜑  →  ( 𝐹  ∘f   ·  𝐺 )  ∈  MblFn ) |