Step |
Hyp |
Ref |
Expression |
1 |
|
mbfmul.1 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
2 |
|
mbfmul.2 |
⊢ ( 𝜑 → 𝐺 ∈ MblFn ) |
3 |
|
mbfmul.3 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) |
4 |
|
mbfmul.4 |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ ℝ ) |
5 |
|
mbfmul.5 |
⊢ ( 𝜑 → 𝑃 : ℕ ⟶ dom ∫1 ) |
6 |
|
mbfmul.6 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) |
7 |
|
mbfmul.7 |
⊢ ( 𝜑 → 𝑄 : ℕ ⟶ dom ∫1 ) |
8 |
|
mbfmul.8 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) |
9 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
10 |
4
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
11 |
3
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
12 |
|
mbfdm |
⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) |
13 |
1 12
|
syl |
⊢ ( 𝜑 → dom 𝐹 ∈ dom vol ) |
14 |
11 13
|
eqeltrrd |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
15 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
16 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
17 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
18 |
9 10 14 14 15 16 17
|
offval |
⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
19 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
20 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
21 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 1 ∈ ℤ ) |
22 |
|
nnex |
⊢ ℕ ∈ V |
23 |
22
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ∈ V |
24 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ∈ V ) |
25 |
5
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑃 ‘ 𝑛 ) ∈ dom ∫1 ) |
26 |
|
i1ff |
⊢ ( ( 𝑃 ‘ 𝑛 ) ∈ dom ∫1 → ( 𝑃 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
27 |
25 26
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑃 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
28 |
27
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑃 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
29 |
|
mblss |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) |
30 |
14 29
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
31 |
30
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
32 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ ℝ ) |
33 |
28 32
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
34 |
33
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℂ ) |
35 |
34
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) : ℕ ⟶ ℂ ) |
36 |
35
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ∈ ℂ ) |
37 |
7
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑄 ‘ 𝑛 ) ∈ dom ∫1 ) |
38 |
|
i1ff |
⊢ ( ( 𝑄 ‘ 𝑛 ) ∈ dom ∫1 → ( 𝑄 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
39 |
37 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑄 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
40 |
39
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑄 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
41 |
40 32
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
42 |
41
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℂ ) |
43 |
42
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) : ℕ ⟶ ℂ ) |
44 |
43
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ∈ ℂ ) |
45 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑃 ‘ 𝑛 ) = ( 𝑃 ‘ 𝑘 ) ) |
46 |
45
|
fveq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) ) |
47 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑄 ‘ 𝑛 ) = ( 𝑄 ‘ 𝑘 ) ) |
48 |
47
|
fveq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) |
49 |
46 48
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
50 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
51 |
|
ovex |
⊢ ( ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ V |
52 |
49 50 51
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
53 |
52
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
54 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) |
55 |
|
fvex |
⊢ ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) ∈ V |
56 |
46 54 55
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) = ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) ) |
57 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) |
58 |
|
fvex |
⊢ ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ∈ V |
59 |
48 57 58
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) = ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) |
60 |
56 59
|
oveq12d |
⊢ ( 𝑘 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ) = ( ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
61 |
60
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ) = ( ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
62 |
53 61
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ) ) |
63 |
19 21 6 24 8 36 44 62
|
climmul |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ⇝ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) |
64 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ⊆ ℝ ) |
65 |
64
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑥 ∈ ℝ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ) |
66 |
27
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑃 ‘ 𝑛 ) Fn ℝ ) |
67 |
39
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑄 ‘ 𝑛 ) Fn ℝ ) |
68 |
|
reex |
⊢ ℝ ∈ V |
69 |
68
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ℝ ∈ V ) |
70 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
71 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) |
72 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) |
73 |
66 67 69 69 70 71 72
|
offval |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑛 ) ∘f · ( 𝑄 ‘ 𝑛 ) ) = ( 𝑥 ∈ ℝ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ) |
74 |
25 37
|
i1fmul |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑛 ) ∘f · ( 𝑄 ‘ 𝑛 ) ) ∈ dom ∫1 ) |
75 |
|
i1fmbf |
⊢ ( ( ( 𝑃 ‘ 𝑛 ) ∘f · ( 𝑄 ‘ 𝑛 ) ) ∈ dom ∫1 → ( ( 𝑃 ‘ 𝑛 ) ∘f · ( 𝑄 ‘ 𝑛 ) ) ∈ MblFn ) |
76 |
74 75
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑛 ) ∘f · ( 𝑄 ‘ 𝑛 ) ) ∈ MblFn ) |
77 |
73 76
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ∈ MblFn ) |
78 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ dom vol ) |
79 |
|
mbfres |
⊢ ( ( ( 𝑥 ∈ ℝ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ( 𝑥 ∈ ℝ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ↾ 𝐴 ) ∈ MblFn ) |
80 |
77 78 79
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑥 ∈ ℝ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ↾ 𝐴 ) ∈ MblFn ) |
81 |
65 80
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ∈ 𝐴 ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ∈ MblFn ) |
82 |
|
ovex |
⊢ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ V |
83 |
82
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ∈ 𝐴 ) ) → ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ V ) |
84 |
19 20 63 81 83
|
mbflim |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ) |
85 |
18 84
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) ∈ MblFn ) |