| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfmul.1 | ⊢ ( 𝜑  →  𝐹  ∈  MblFn ) | 
						
							| 2 |  | mbfmul.2 | ⊢ ( 𝜑  →  𝐺  ∈  MblFn ) | 
						
							| 3 |  | mbfmul.3 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℝ ) | 
						
							| 4 |  | mbfmul.4 | ⊢ ( 𝜑  →  𝐺 : 𝐴 ⟶ ℝ ) | 
						
							| 5 |  | mbfmul.5 | ⊢ ( 𝜑  →  𝑃 : ℕ ⟶ dom  ∫1 ) | 
						
							| 6 |  | mbfmul.6 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 7 |  | mbfmul.7 | ⊢ ( 𝜑  →  𝑄 : ℕ ⟶ dom  ∫1 ) | 
						
							| 8 |  | mbfmul.8 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 9 | 3 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝐴 ) | 
						
							| 10 | 4 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  𝐴 ) | 
						
							| 11 | 3 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝐴 ) | 
						
							| 12 |  | mbfdm | ⊢ ( 𝐹  ∈  MblFn  →  dom  𝐹  ∈  dom  vol ) | 
						
							| 13 | 1 12 | syl | ⊢ ( 𝜑  →  dom  𝐹  ∈  dom  vol ) | 
						
							| 14 | 11 13 | eqeltrrd | ⊢ ( 𝜑  →  𝐴  ∈  dom  vol ) | 
						
							| 15 |  | inidm | ⊢ ( 𝐴  ∩  𝐴 )  =  𝐴 | 
						
							| 16 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 17 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 18 | 9 10 14 14 15 16 17 | offval | ⊢ ( 𝜑  →  ( 𝐹  ∘f   ·  𝐺 )  =  ( 𝑥  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 19 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 20 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 21 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  1  ∈  ℤ ) | 
						
							| 22 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 23 | 22 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  ·  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) )  ∈  V | 
						
							| 24 | 23 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  ·  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) )  ∈  V ) | 
						
							| 25 | 5 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑃 ‘ 𝑛 )  ∈  dom  ∫1 ) | 
						
							| 26 |  | i1ff | ⊢ ( ( 𝑃 ‘ 𝑛 )  ∈  dom  ∫1  →  ( 𝑃 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | 
						
							| 27 | 25 26 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑃 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | 
						
							| 28 | 27 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑛  ∈  ℕ )  →  ( 𝑃 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | 
						
							| 29 |  | mblss | ⊢ ( 𝐴  ∈  dom  vol  →  𝐴  ⊆  ℝ ) | 
						
							| 30 | 14 29 | syl | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 31 | 30 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ℝ ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑛  ∈  ℕ )  →  𝑥  ∈  ℝ ) | 
						
							| 33 | 28 32 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 34 | 33 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 35 | 34 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) : ℕ ⟶ ℂ ) | 
						
							| 36 | 35 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 37 | 7 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑄 ‘ 𝑛 )  ∈  dom  ∫1 ) | 
						
							| 38 |  | i1ff | ⊢ ( ( 𝑄 ‘ 𝑛 )  ∈  dom  ∫1  →  ( 𝑄 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | 
						
							| 39 | 37 38 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑄 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | 
						
							| 40 | 39 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑛  ∈  ℕ )  →  ( 𝑄 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | 
						
							| 41 | 40 32 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 42 | 41 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 43 | 42 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) : ℕ ⟶ ℂ ) | 
						
							| 44 | 43 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 45 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑃 ‘ 𝑛 )  =  ( 𝑃 ‘ 𝑘 ) ) | 
						
							| 46 | 45 | fveq1d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) ) | 
						
							| 47 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑄 ‘ 𝑛 )  =  ( 𝑄 ‘ 𝑘 ) ) | 
						
							| 48 | 47 | fveq1d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) | 
						
							| 49 | 46 48 | oveq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  ·  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 )  ·  ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) ) | 
						
							| 50 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  ·  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  ·  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 51 |  | ovex | ⊢ ( ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 )  ·  ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  V | 
						
							| 52 | 49 50 51 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  ·  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 )  ·  ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  ·  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 )  ·  ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) ) | 
						
							| 54 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 55 |  | fvex | ⊢ ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 )  ∈  V | 
						
							| 56 | 46 54 55 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 )  =  ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) ) | 
						
							| 57 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 58 |  | fvex | ⊢ ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 )  ∈  V | 
						
							| 59 | 48 57 58 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 )  =  ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) | 
						
							| 60 | 56 59 | oveq12d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) )  =  ( ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 )  ·  ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) ) | 
						
							| 61 | 60 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) )  =  ( ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 )  ·  ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) ) | 
						
							| 62 | 53 61 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  ·  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ) ) | 
						
							| 63 | 19 21 6 24 8 36 44 62 | climmul | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  ·  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) )  ⇝  ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 64 | 30 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐴  ⊆  ℝ ) | 
						
							| 65 | 64 | resmptd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑥  ∈  ℝ  ↦  ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  ·  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) )  ↾  𝐴 )  =  ( 𝑥  ∈  𝐴  ↦  ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  ·  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ) | 
						
							| 66 | 27 | ffnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑃 ‘ 𝑛 )  Fn  ℝ ) | 
						
							| 67 | 39 | ffnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑄 ‘ 𝑛 )  Fn  ℝ ) | 
						
							| 68 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 69 | 68 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ℝ  ∈  V ) | 
						
							| 70 |  | inidm | ⊢ ( ℝ  ∩  ℝ )  =  ℝ | 
						
							| 71 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 72 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 73 | 66 67 69 69 70 71 72 | offval | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑃 ‘ 𝑛 )  ∘f   ·  ( 𝑄 ‘ 𝑛 ) )  =  ( 𝑥  ∈  ℝ  ↦  ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  ·  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ) | 
						
							| 74 | 25 37 | i1fmul | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑃 ‘ 𝑛 )  ∘f   ·  ( 𝑄 ‘ 𝑛 ) )  ∈  dom  ∫1 ) | 
						
							| 75 |  | i1fmbf | ⊢ ( ( ( 𝑃 ‘ 𝑛 )  ∘f   ·  ( 𝑄 ‘ 𝑛 ) )  ∈  dom  ∫1  →  ( ( 𝑃 ‘ 𝑛 )  ∘f   ·  ( 𝑄 ‘ 𝑛 ) )  ∈  MblFn ) | 
						
							| 76 | 74 75 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑃 ‘ 𝑛 )  ∘f   ·  ( 𝑄 ‘ 𝑛 ) )  ∈  MblFn ) | 
						
							| 77 | 73 76 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑥  ∈  ℝ  ↦  ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  ·  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) )  ∈  MblFn ) | 
						
							| 78 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐴  ∈  dom  vol ) | 
						
							| 79 |  | mbfres | ⊢ ( ( ( 𝑥  ∈  ℝ  ↦  ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  ·  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) )  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  →  ( ( 𝑥  ∈  ℝ  ↦  ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  ·  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) )  ↾  𝐴 )  ∈  MblFn ) | 
						
							| 80 | 77 78 79 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑥  ∈  ℝ  ↦  ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  ·  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) )  ↾  𝐴 )  ∈  MblFn ) | 
						
							| 81 | 65 80 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑥  ∈  𝐴  ↦  ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  ·  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) )  ∈  MblFn ) | 
						
							| 82 |  | ovex | ⊢ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  ·  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) )  ∈  V | 
						
							| 83 | 82 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑥  ∈  𝐴 ) )  →  ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  ·  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) )  ∈  V ) | 
						
							| 84 | 19 20 63 81 83 | mbflim | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) )  ∈  MblFn ) | 
						
							| 85 | 18 84 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐹  ∘f   ·  𝐺 )  ∈  MblFn ) |