Metamath Proof Explorer


Theorem mbfmullem2

Description: Lemma for mbfmul . (Contributed by Mario Carneiro, 7-Sep-2014)

Ref Expression
Hypotheses mbfmul.1 ( 𝜑𝐹 ∈ MblFn )
mbfmul.2 ( 𝜑𝐺 ∈ MblFn )
mbfmul.3 ( 𝜑𝐹 : 𝐴 ⟶ ℝ )
mbfmul.4 ( 𝜑𝐺 : 𝐴 ⟶ ℝ )
mbfmul.5 ( 𝜑𝑃 : ℕ ⟶ dom ∫1 )
mbfmul.6 ( ( 𝜑𝑥𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹𝑥 ) )
mbfmul.7 ( 𝜑𝑄 : ℕ ⟶ dom ∫1 )
mbfmul.8 ( ( 𝜑𝑥𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺𝑥 ) )
Assertion mbfmullem2 ( 𝜑 → ( 𝐹f · 𝐺 ) ∈ MblFn )

Proof

Step Hyp Ref Expression
1 mbfmul.1 ( 𝜑𝐹 ∈ MblFn )
2 mbfmul.2 ( 𝜑𝐺 ∈ MblFn )
3 mbfmul.3 ( 𝜑𝐹 : 𝐴 ⟶ ℝ )
4 mbfmul.4 ( 𝜑𝐺 : 𝐴 ⟶ ℝ )
5 mbfmul.5 ( 𝜑𝑃 : ℕ ⟶ dom ∫1 )
6 mbfmul.6 ( ( 𝜑𝑥𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹𝑥 ) )
7 mbfmul.7 ( 𝜑𝑄 : ℕ ⟶ dom ∫1 )
8 mbfmul.8 ( ( 𝜑𝑥𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺𝑥 ) )
9 3 ffnd ( 𝜑𝐹 Fn 𝐴 )
10 4 ffnd ( 𝜑𝐺 Fn 𝐴 )
11 3 fdmd ( 𝜑 → dom 𝐹 = 𝐴 )
12 mbfdm ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol )
13 1 12 syl ( 𝜑 → dom 𝐹 ∈ dom vol )
14 11 13 eqeltrrd ( 𝜑𝐴 ∈ dom vol )
15 inidm ( 𝐴𝐴 ) = 𝐴
16 eqidd ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) = ( 𝐹𝑥 ) )
17 eqidd ( ( 𝜑𝑥𝐴 ) → ( 𝐺𝑥 ) = ( 𝐺𝑥 ) )
18 9 10 14 14 15 16 17 offval ( 𝜑 → ( 𝐹f · 𝐺 ) = ( 𝑥𝐴 ↦ ( ( 𝐹𝑥 ) · ( 𝐺𝑥 ) ) ) )
19 nnuz ℕ = ( ℤ ‘ 1 )
20 1zzd ( 𝜑 → 1 ∈ ℤ )
21 1zzd ( ( 𝜑𝑥𝐴 ) → 1 ∈ ℤ )
22 nnex ℕ ∈ V
23 22 mptex ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃𝑛 ) ‘ 𝑥 ) · ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) ) ∈ V
24 23 a1i ( ( 𝜑𝑥𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃𝑛 ) ‘ 𝑥 ) · ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) ) ∈ V )
25 5 ffvelrnda ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑃𝑛 ) ∈ dom ∫1 )
26 i1ff ( ( 𝑃𝑛 ) ∈ dom ∫1 → ( 𝑃𝑛 ) : ℝ ⟶ ℝ )
27 25 26 syl ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑃𝑛 ) : ℝ ⟶ ℝ )
28 27 adantlr ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑃𝑛 ) : ℝ ⟶ ℝ )
29 mblss ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ )
30 14 29 syl ( 𝜑𝐴 ⊆ ℝ )
31 30 sselda ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ ℝ )
32 31 adantr ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ ℝ )
33 28 32 ffvelrnd ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑃𝑛 ) ‘ 𝑥 ) ∈ ℝ )
34 33 recnd ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑃𝑛 ) ‘ 𝑥 ) ∈ ℂ )
35 34 fmpttd ( ( 𝜑𝑥𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃𝑛 ) ‘ 𝑥 ) ) : ℕ ⟶ ℂ )
36 35 ffvelrnda ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ∈ ℂ )
37 7 ffvelrnda ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑄𝑛 ) ∈ dom ∫1 )
38 i1ff ( ( 𝑄𝑛 ) ∈ dom ∫1 → ( 𝑄𝑛 ) : ℝ ⟶ ℝ )
39 37 38 syl ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑄𝑛 ) : ℝ ⟶ ℝ )
40 39 adantlr ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑄𝑛 ) : ℝ ⟶ ℝ )
41 40 32 ffvelrnd ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑄𝑛 ) ‘ 𝑥 ) ∈ ℝ )
42 41 recnd ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑄𝑛 ) ‘ 𝑥 ) ∈ ℂ )
43 42 fmpttd ( ( 𝜑𝑥𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) : ℕ ⟶ ℂ )
44 43 ffvelrnda ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ∈ ℂ )
45 fveq2 ( 𝑛 = 𝑘 → ( 𝑃𝑛 ) = ( 𝑃𝑘 ) )
46 45 fveq1d ( 𝑛 = 𝑘 → ( ( 𝑃𝑛 ) ‘ 𝑥 ) = ( ( 𝑃𝑘 ) ‘ 𝑥 ) )
47 fveq2 ( 𝑛 = 𝑘 → ( 𝑄𝑛 ) = ( 𝑄𝑘 ) )
48 47 fveq1d ( 𝑛 = 𝑘 → ( ( 𝑄𝑛 ) ‘ 𝑥 ) = ( ( 𝑄𝑘 ) ‘ 𝑥 ) )
49 46 48 oveq12d ( 𝑛 = 𝑘 → ( ( ( 𝑃𝑛 ) ‘ 𝑥 ) · ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) = ( ( ( 𝑃𝑘 ) ‘ 𝑥 ) · ( ( 𝑄𝑘 ) ‘ 𝑥 ) ) )
50 eqid ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃𝑛 ) ‘ 𝑥 ) · ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃𝑛 ) ‘ 𝑥 ) · ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) )
51 ovex ( ( ( 𝑃𝑘 ) ‘ 𝑥 ) · ( ( 𝑄𝑘 ) ‘ 𝑥 ) ) ∈ V
52 49 50 51 fvmpt ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃𝑛 ) ‘ 𝑥 ) · ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( ( 𝑃𝑘 ) ‘ 𝑥 ) · ( ( 𝑄𝑘 ) ‘ 𝑥 ) ) )
53 52 adantl ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃𝑛 ) ‘ 𝑥 ) · ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( ( 𝑃𝑘 ) ‘ 𝑥 ) · ( ( 𝑄𝑘 ) ‘ 𝑥 ) ) )
54 eqid ( 𝑛 ∈ ℕ ↦ ( ( 𝑃𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑃𝑛 ) ‘ 𝑥 ) )
55 fvex ( ( 𝑃𝑘 ) ‘ 𝑥 ) ∈ V
56 46 54 55 fvmpt ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) = ( ( 𝑃𝑘 ) ‘ 𝑥 ) )
57 eqid ( 𝑛 ∈ ℕ ↦ ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑄𝑛 ) ‘ 𝑥 ) )
58 fvex ( ( 𝑄𝑘 ) ‘ 𝑥 ) ∈ V
59 48 57 58 fvmpt ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) = ( ( 𝑄𝑘 ) ‘ 𝑥 ) )
60 56 59 oveq12d ( 𝑘 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ) = ( ( ( 𝑃𝑘 ) ‘ 𝑥 ) · ( ( 𝑄𝑘 ) ‘ 𝑥 ) ) )
61 60 adantl ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ) = ( ( ( 𝑃𝑘 ) ‘ 𝑥 ) · ( ( 𝑄𝑘 ) ‘ 𝑥 ) ) )
62 53 61 eqtr4d ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃𝑛 ) ‘ 𝑥 ) · ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ) )
63 19 21 6 24 8 36 44 62 climmul ( ( 𝜑𝑥𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃𝑛 ) ‘ 𝑥 ) · ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) ) ⇝ ( ( 𝐹𝑥 ) · ( 𝐺𝑥 ) ) )
64 30 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝐴 ⊆ ℝ )
65 64 resmptd ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝑥 ∈ ℝ ↦ ( ( ( 𝑃𝑛 ) ‘ 𝑥 ) · ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) ) ↾ 𝐴 ) = ( 𝑥𝐴 ↦ ( ( ( 𝑃𝑛 ) ‘ 𝑥 ) · ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) ) )
66 27 ffnd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑃𝑛 ) Fn ℝ )
67 39 ffnd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑄𝑛 ) Fn ℝ )
68 reex ℝ ∈ V
69 68 a1i ( ( 𝜑𝑛 ∈ ℕ ) → ℝ ∈ V )
70 inidm ( ℝ ∩ ℝ ) = ℝ
71 eqidd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑃𝑛 ) ‘ 𝑥 ) = ( ( 𝑃𝑛 ) ‘ 𝑥 ) )
72 eqidd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑄𝑛 ) ‘ 𝑥 ) = ( ( 𝑄𝑛 ) ‘ 𝑥 ) )
73 66 67 69 69 70 71 72 offval ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝑃𝑛 ) ∘f · ( 𝑄𝑛 ) ) = ( 𝑥 ∈ ℝ ↦ ( ( ( 𝑃𝑛 ) ‘ 𝑥 ) · ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) ) )
74 25 37 i1fmul ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝑃𝑛 ) ∘f · ( 𝑄𝑛 ) ) ∈ dom ∫1 )
75 i1fmbf ( ( ( 𝑃𝑛 ) ∘f · ( 𝑄𝑛 ) ) ∈ dom ∫1 → ( ( 𝑃𝑛 ) ∘f · ( 𝑄𝑛 ) ) ∈ MblFn )
76 74 75 syl ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝑃𝑛 ) ∘f · ( 𝑄𝑛 ) ) ∈ MblFn )
77 73 76 eqeltrrd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ ( ( ( 𝑃𝑛 ) ‘ 𝑥 ) · ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) ) ∈ MblFn )
78 14 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝐴 ∈ dom vol )
79 mbfres ( ( ( 𝑥 ∈ ℝ ↦ ( ( ( 𝑃𝑛 ) ‘ 𝑥 ) · ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) ) ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ( 𝑥 ∈ ℝ ↦ ( ( ( 𝑃𝑛 ) ‘ 𝑥 ) · ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) ) ↾ 𝐴 ) ∈ MblFn )
80 77 78 79 syl2anc ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝑥 ∈ ℝ ↦ ( ( ( 𝑃𝑛 ) ‘ 𝑥 ) · ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) ) ↾ 𝐴 ) ∈ MblFn )
81 65 80 eqeltrrd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑥𝐴 ↦ ( ( ( 𝑃𝑛 ) ‘ 𝑥 ) · ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) ) ∈ MblFn )
82 ovex ( ( ( 𝑃𝑛 ) ‘ 𝑥 ) · ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) ∈ V
83 82 a1i ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑥𝐴 ) ) → ( ( ( 𝑃𝑛 ) ‘ 𝑥 ) · ( ( 𝑄𝑛 ) ‘ 𝑥 ) ) ∈ V )
84 19 20 63 81 83 mbflim ( 𝜑 → ( 𝑥𝐴 ↦ ( ( 𝐹𝑥 ) · ( 𝐺𝑥 ) ) ) ∈ MblFn )
85 18 84 eqeltrd ( 𝜑 → ( 𝐹f · 𝐺 ) ∈ MblFn )