| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfneg.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 2 |  | mbfneg.2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 3 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 4 | 3 1 | dmmptd | ⊢ ( 𝜑  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  𝐴 ) | 
						
							| 5 | 2 | dmexd | ⊢ ( 𝜑  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  V ) | 
						
							| 6 | 4 5 | eqeltrrd | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 7 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 8 | 7 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - 1  ∈  ℝ ) | 
						
							| 9 |  | fconstmpt | ⊢ ( 𝐴  ×  { - 1 } )  =  ( 𝑥  ∈  𝐴  ↦  - 1 ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  ( 𝐴  ×  { - 1 } )  =  ( 𝑥  ∈  𝐴  ↦  - 1 ) ) | 
						
							| 11 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 12 | 6 8 1 10 11 | offval2 | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { - 1 } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( - 1  ·  𝐵 ) ) ) | 
						
							| 13 | 2 1 | mbfmptcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 14 | 13 | mulm1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( - 1  ·  𝐵 )  =  - 𝐵 ) | 
						
							| 15 | 14 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( - 1  ·  𝐵 ) )  =  ( 𝑥  ∈  𝐴  ↦  - 𝐵 ) ) | 
						
							| 16 | 12 15 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { - 1 } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  =  ( 𝑥  ∈  𝐴  ↦  - 𝐵 ) ) | 
						
							| 17 | 7 | a1i | ⊢ ( 𝜑  →  - 1  ∈  ℝ ) | 
						
							| 18 | 13 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ℂ ) | 
						
							| 19 | 2 17 18 | mbfmulc2re | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { - 1 } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ∈  MblFn ) | 
						
							| 20 | 16 19 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  - 𝐵 )  ∈  MblFn ) |