Step |
Hyp |
Ref |
Expression |
1 |
|
mbfneg.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
2 |
|
mbfneg.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
3 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
4 |
3 1
|
dmmptd |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
5 |
2
|
dmexd |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
6 |
4 5
|
eqeltrrd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
7 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
8 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 1 ∈ ℝ ) |
9 |
|
fconstmpt |
⊢ ( 𝐴 × { - 1 } ) = ( 𝑥 ∈ 𝐴 ↦ - 1 ) |
10 |
9
|
a1i |
⊢ ( 𝜑 → ( 𝐴 × { - 1 } ) = ( 𝑥 ∈ 𝐴 ↦ - 1 ) ) |
11 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
12 |
6 8 1 10 11
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐴 × { - 1 } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( - 1 · 𝐵 ) ) ) |
13 |
2 1
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
14 |
13
|
mulm1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 1 · 𝐵 ) = - 𝐵 ) |
15 |
14
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( - 1 · 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ) |
16 |
12 15
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 × { - 1 } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ) |
17 |
7
|
a1i |
⊢ ( 𝜑 → - 1 ∈ ℝ ) |
18 |
13
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
19 |
2 17 18
|
mbfmulc2re |
⊢ ( 𝜑 → ( ( 𝐴 × { - 1 } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ MblFn ) |
20 |
16 19
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ MblFn ) |