| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfpos.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 2 |  | mbfpos.2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 3 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 4 | 3 | fvconst2 | ⊢ ( 𝑥  ∈  𝐴  →  ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 )  =  0 ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 )  =  0 ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 7 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 8 | 7 | fvmpt2 | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝐵  ∈  ℝ )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  =  𝐵 ) | 
						
							| 9 | 6 1 8 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  =  𝐵 ) | 
						
							| 10 | 5 9 | breq12d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 )  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  ↔  0  ≤  𝐵 ) ) | 
						
							| 11 | 10 9 5 | ifbieq12d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 )  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 ) )  =  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) | 
						
							| 12 | 11 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 )  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) ) | 
						
							| 13 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 14 | 13 | fconst6 | ⊢ ( 𝐴  ×  { 0 } ) : 𝐴 ⟶ ℝ | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  ( 𝐴  ×  { 0 } ) : 𝐴 ⟶ ℝ ) | 
						
							| 16 | 2 1 | mbfdm2 | ⊢ ( 𝜑  →  𝐴  ∈  dom  vol ) | 
						
							| 17 |  | 0cnd | ⊢ ( 𝜑  →  0  ∈  ℂ ) | 
						
							| 18 |  | mbfconst | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  0  ∈  ℂ )  →  ( 𝐴  ×  { 0 } )  ∈  MblFn ) | 
						
							| 19 | 16 17 18 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ×  { 0 } )  ∈  MblFn ) | 
						
							| 20 | 1 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ℝ ) | 
						
							| 21 |  | nfcv | ⊢ Ⅎ 𝑦 if ( ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 )  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 ) ) | 
						
							| 22 |  | nfcv | ⊢ Ⅎ 𝑥 ( ( 𝐴  ×  { 0 } ) ‘ 𝑦 ) | 
						
							| 23 |  | nfcv | ⊢ Ⅎ 𝑥  ≤ | 
						
							| 24 |  | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) | 
						
							| 25 | 22 23 24 | nfbr | ⊢ Ⅎ 𝑥 ( ( 𝐴  ×  { 0 } ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) | 
						
							| 26 | 25 24 22 | nfif | ⊢ Ⅎ 𝑥 if ( ( ( 𝐴  ×  { 0 } ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  ( ( 𝐴  ×  { 0 } ) ‘ 𝑦 ) ) | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 )  =  ( ( 𝐴  ×  { 0 } ) ‘ 𝑦 ) ) | 
						
							| 28 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ) | 
						
							| 29 | 27 28 | breq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 )  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  ↔  ( ( 𝐴  ×  { 0 } ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ) ) | 
						
							| 30 | 29 28 27 | ifbieq12d | ⊢ ( 𝑥  =  𝑦  →  if ( ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 )  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 ) )  =  if ( ( ( 𝐴  ×  { 0 } ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  ( ( 𝐴  ×  { 0 } ) ‘ 𝑦 ) ) ) | 
						
							| 31 | 21 26 30 | cbvmpt | ⊢ ( 𝑥  ∈  𝐴  ↦  if ( ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 )  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 ) ) )  =  ( 𝑦  ∈  𝐴  ↦  if ( ( ( 𝐴  ×  { 0 } ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  ( ( 𝐴  ×  { 0 } ) ‘ 𝑦 ) ) ) | 
						
							| 32 | 15 19 20 2 31 | mbfmax | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 )  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 ) ) )  ∈  MblFn ) | 
						
							| 33 | 12 32 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  MblFn ) |