| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfpos.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 2 |  | nfcv | ⊢ Ⅎ 𝑥 0 | 
						
							| 3 |  | nfcv | ⊢ Ⅎ 𝑥  ≤ | 
						
							| 4 |  | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) | 
						
							| 5 | 2 3 4 | nfbr | ⊢ Ⅎ 𝑥 0  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) | 
						
							| 6 | 5 4 2 | nfif | ⊢ Ⅎ 𝑥 if ( 0  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  0 ) | 
						
							| 7 |  | nfcv | ⊢ Ⅎ 𝑦 if ( 0  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  0 ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  =  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ) | 
						
							| 9 | 8 | breq2d | ⊢ ( 𝑦  =  𝑥  →  ( 0  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  ↔  0  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ) ) | 
						
							| 10 | 9 8 | ifbieq1d | ⊢ ( 𝑦  =  𝑥  →  if ( 0  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  0 )  =  if ( 0  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  0 ) ) | 
						
							| 11 | 6 7 10 | cbvmpt | ⊢ ( 𝑦  ∈  𝐴  ↦  if ( 0  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  0 ) )  =  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  0 ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 13 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 14 | 13 | fvmpt2 | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝐵  ∈  ℝ )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  =  𝐵 ) | 
						
							| 15 | 12 1 14 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  =  𝐵 ) | 
						
							| 16 | 15 | breq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 0  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  ↔  0  ≤  𝐵 ) ) | 
						
							| 17 | 16 15 | ifbieq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  0 )  =  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) | 
						
							| 18 | 17 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  0 ) )  =  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) ) | 
						
							| 19 | 11 18 | eqtrid | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐴  ↦  if ( 0  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  0 ) )  =  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn )  →  ( 𝑦  ∈  𝐴  ↦  if ( 0  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  0 ) )  =  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) ) | 
						
							| 21 | 1 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ℝ ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn )  →  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ℝ ) | 
						
							| 23 | 22 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn )  ∧  𝑦  ∈  𝐴 )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 24 |  | nfcv | ⊢ Ⅎ 𝑦 ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) | 
						
							| 25 | 4 24 8 | cbvmpt | ⊢ ( 𝑦  ∈  𝐴  ↦  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ) | 
						
							| 26 | 15 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 27 | 25 26 | eqtrid | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐴  ↦  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 28 | 27 | eleq1d | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐴  ↦  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) )  ∈  MblFn  ↔  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) ) | 
						
							| 29 | 28 | biimpar | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn )  →  ( 𝑦  ∈  𝐴  ↦  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) )  ∈  MblFn ) | 
						
							| 30 | 23 29 | mbfpos | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn )  →  ( 𝑦  ∈  𝐴  ↦  if ( 0  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  0 ) )  ∈  MblFn ) | 
						
							| 31 | 20 30 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn )  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  MblFn ) | 
						
							| 32 | 4 | nfneg | ⊢ Ⅎ 𝑥 - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) | 
						
							| 33 | 2 3 32 | nfbr | ⊢ Ⅎ 𝑥 0  ≤  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) | 
						
							| 34 | 33 32 2 | nfif | ⊢ Ⅎ 𝑥 if ( 0  ≤  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  0 ) | 
						
							| 35 |  | nfcv | ⊢ Ⅎ 𝑦 if ( 0  ≤  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  0 ) | 
						
							| 36 | 8 | negeqd | ⊢ ( 𝑦  =  𝑥  →  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  =  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ) | 
						
							| 37 | 36 | breq2d | ⊢ ( 𝑦  =  𝑥  →  ( 0  ≤  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  ↔  0  ≤  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ) ) | 
						
							| 38 | 37 36 | ifbieq1d | ⊢ ( 𝑦  =  𝑥  →  if ( 0  ≤  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  0 )  =  if ( 0  ≤  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  0 ) ) | 
						
							| 39 | 34 35 38 | cbvmpt | ⊢ ( 𝑦  ∈  𝐴  ↦  if ( 0  ≤  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  0 ) )  =  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  0 ) ) | 
						
							| 40 | 15 | negeqd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  =  - 𝐵 ) | 
						
							| 41 | 40 | breq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 0  ≤  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  ↔  0  ≤  - 𝐵 ) ) | 
						
							| 42 | 41 40 | ifbieq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  0 )  =  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) | 
						
							| 43 | 42 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ,  0 ) )  =  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) ) | 
						
							| 44 | 39 43 | eqtrid | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐴  ↦  if ( 0  ≤  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  0 ) )  =  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn )  →  ( 𝑦  ∈  𝐴  ↦  if ( 0  ≤  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  0 ) )  =  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) ) | 
						
							| 46 | 23 | renegcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn )  ∧  𝑦  ∈  𝐴 )  →  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 47 | 23 29 | mbfneg | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn )  →  ( 𝑦  ∈  𝐴  ↦  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) )  ∈  MblFn ) | 
						
							| 48 | 46 47 | mbfpos | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn )  →  ( 𝑦  ∈  𝐴  ↦  if ( 0  ≤  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  0 ) )  ∈  MblFn ) | 
						
							| 49 | 45 48 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn )  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  ∈  MblFn ) | 
						
							| 50 | 31 49 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn )  →  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  ∈  MblFn ) ) | 
						
							| 51 | 27 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  ∈  MblFn ) )  →  ( 𝑦  ∈  𝐴  ↦  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 52 | 21 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 53 | 52 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  ∈  MblFn ) )  ∧  𝑦  ∈  𝐴 )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 54 | 19 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  ∈  MblFn ) )  →  ( 𝑦  ∈  𝐴  ↦  if ( 0  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  0 ) )  =  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) ) | 
						
							| 55 |  | simprl | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  ∈  MblFn ) )  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  MblFn ) | 
						
							| 56 | 54 55 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  ∈  MblFn ) )  →  ( 𝑦  ∈  𝐴  ↦  if ( 0  ≤  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  0 ) )  ∈  MblFn ) | 
						
							| 57 | 44 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  ∈  MblFn ) )  →  ( 𝑦  ∈  𝐴  ↦  if ( 0  ≤  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  0 ) )  =  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) ) | 
						
							| 58 |  | simprr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  ∈  MblFn ) )  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  ∈  MblFn ) | 
						
							| 59 | 57 58 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  ∈  MblFn ) )  →  ( 𝑦  ∈  𝐴  ↦  if ( 0  ≤  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  - ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ,  0 ) )  ∈  MblFn ) | 
						
							| 60 | 53 56 59 | mbfposr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  ∈  MblFn ) )  →  ( 𝑦  ∈  𝐴  ↦  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) )  ∈  MblFn ) | 
						
							| 61 | 51 60 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  ∈  MblFn ) )  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 62 | 50 61 | impbida | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn  ↔  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  ∈  MblFn ) ) ) |