| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ref | ⊢ ℜ : ℂ ⟶ ℝ | 
						
							| 2 |  | simpr | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  →  𝐴  ∈  dom  vol ) | 
						
							| 3 |  | ismbf1 | ⊢ ( 𝐹  ∈  MblFn  ↔  ( 𝐹  ∈  ( ℂ  ↑pm  ℝ )  ∧  ∀ 𝑥  ∈  ran  (,) ( ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∈  dom  vol  ∧  ( ◡ ( ℑ  ∘  𝐹 )  “  𝑥 )  ∈  dom  vol ) ) ) | 
						
							| 4 | 3 | simplbi | ⊢ ( 𝐹  ∈  MblFn  →  𝐹  ∈  ( ℂ  ↑pm  ℝ ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  →  𝐹  ∈  ( ℂ  ↑pm  ℝ ) ) | 
						
							| 6 |  | pmresg | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  𝐹  ∈  ( ℂ  ↑pm  ℝ ) )  →  ( 𝐹  ↾  𝐴 )  ∈  ( ℂ  ↑pm  𝐴 ) ) | 
						
							| 7 | 2 5 6 | syl2anc | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  →  ( 𝐹  ↾  𝐴 )  ∈  ( ℂ  ↑pm  𝐴 ) ) | 
						
							| 8 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 9 |  | elpm2g | ⊢ ( ( ℂ  ∈  V  ∧  𝐴  ∈  dom  vol )  →  ( ( 𝐹  ↾  𝐴 )  ∈  ( ℂ  ↑pm  𝐴 )  ↔  ( ( 𝐹  ↾  𝐴 ) : dom  ( 𝐹  ↾  𝐴 ) ⟶ ℂ  ∧  dom  ( 𝐹  ↾  𝐴 )  ⊆  𝐴 ) ) ) | 
						
							| 10 | 8 2 9 | sylancr | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  →  ( ( 𝐹  ↾  𝐴 )  ∈  ( ℂ  ↑pm  𝐴 )  ↔  ( ( 𝐹  ↾  𝐴 ) : dom  ( 𝐹  ↾  𝐴 ) ⟶ ℂ  ∧  dom  ( 𝐹  ↾  𝐴 )  ⊆  𝐴 ) ) ) | 
						
							| 11 | 7 10 | mpbid | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  →  ( ( 𝐹  ↾  𝐴 ) : dom  ( 𝐹  ↾  𝐴 ) ⟶ ℂ  ∧  dom  ( 𝐹  ↾  𝐴 )  ⊆  𝐴 ) ) | 
						
							| 12 | 11 | simpld | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  →  ( 𝐹  ↾  𝐴 ) : dom  ( 𝐹  ↾  𝐴 ) ⟶ ℂ ) | 
						
							| 13 |  | fco | ⊢ ( ( ℜ : ℂ ⟶ ℝ  ∧  ( 𝐹  ↾  𝐴 ) : dom  ( 𝐹  ↾  𝐴 ) ⟶ ℂ )  →  ( ℜ  ∘  ( 𝐹  ↾  𝐴 ) ) : dom  ( 𝐹  ↾  𝐴 ) ⟶ ℝ ) | 
						
							| 14 | 1 12 13 | sylancr | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  →  ( ℜ  ∘  ( 𝐹  ↾  𝐴 ) ) : dom  ( 𝐹  ↾  𝐴 ) ⟶ ℝ ) | 
						
							| 15 |  | dmres | ⊢ dom  ( 𝐹  ↾  𝐴 )  =  ( 𝐴  ∩  dom  𝐹 ) | 
						
							| 16 |  | id | ⊢ ( 𝐴  ∈  dom  vol  →  𝐴  ∈  dom  vol ) | 
						
							| 17 |  | mbfdm | ⊢ ( 𝐹  ∈  MblFn  →  dom  𝐹  ∈  dom  vol ) | 
						
							| 18 |  | inmbl | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  dom  𝐹  ∈  dom  vol )  →  ( 𝐴  ∩  dom  𝐹 )  ∈  dom  vol ) | 
						
							| 19 | 16 17 18 | syl2anr | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  →  ( 𝐴  ∩  dom  𝐹 )  ∈  dom  vol ) | 
						
							| 20 | 15 19 | eqeltrid | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  →  dom  ( 𝐹  ↾  𝐴 )  ∈  dom  vol ) | 
						
							| 21 |  | resco | ⊢ ( ( ℜ  ∘  𝐹 )  ↾  𝐴 )  =  ( ℜ  ∘  ( 𝐹  ↾  𝐴 ) ) | 
						
							| 22 | 21 | cnveqi | ⊢ ◡ ( ( ℜ  ∘  𝐹 )  ↾  𝐴 )  =  ◡ ( ℜ  ∘  ( 𝐹  ↾  𝐴 ) ) | 
						
							| 23 | 22 | imaeq1i | ⊢ ( ◡ ( ( ℜ  ∘  𝐹 )  ↾  𝐴 )  “  ( 𝑥 (,) +∞ ) )  =  ( ◡ ( ℜ  ∘  ( 𝐹  ↾  𝐴 ) )  “  ( 𝑥 (,) +∞ ) ) | 
						
							| 24 |  | cnvresima | ⊢ ( ◡ ( ( ℜ  ∘  𝐹 )  ↾  𝐴 )  “  ( 𝑥 (,) +∞ ) )  =  ( ( ◡ ( ℜ  ∘  𝐹 )  “  ( 𝑥 (,) +∞ ) )  ∩  𝐴 ) | 
						
							| 25 | 23 24 | eqtr3i | ⊢ ( ◡ ( ℜ  ∘  ( 𝐹  ↾  𝐴 ) )  “  ( 𝑥 (,) +∞ ) )  =  ( ( ◡ ( ℜ  ∘  𝐹 )  “  ( 𝑥 (,) +∞ ) )  ∩  𝐴 ) | 
						
							| 26 |  | mbff | ⊢ ( 𝐹  ∈  MblFn  →  𝐹 : dom  𝐹 ⟶ ℂ ) | 
						
							| 27 |  | ismbfcn | ⊢ ( 𝐹 : dom  𝐹 ⟶ ℂ  →  ( 𝐹  ∈  MblFn  ↔  ( ( ℜ  ∘  𝐹 )  ∈  MblFn  ∧  ( ℑ  ∘  𝐹 )  ∈  MblFn ) ) ) | 
						
							| 28 | 26 27 | syl | ⊢ ( 𝐹  ∈  MblFn  →  ( 𝐹  ∈  MblFn  ↔  ( ( ℜ  ∘  𝐹 )  ∈  MblFn  ∧  ( ℑ  ∘  𝐹 )  ∈  MblFn ) ) ) | 
						
							| 29 | 28 | ibi | ⊢ ( 𝐹  ∈  MblFn  →  ( ( ℜ  ∘  𝐹 )  ∈  MblFn  ∧  ( ℑ  ∘  𝐹 )  ∈  MblFn ) ) | 
						
							| 30 | 29 | simpld | ⊢ ( 𝐹  ∈  MblFn  →  ( ℜ  ∘  𝐹 )  ∈  MblFn ) | 
						
							| 31 |  | fco | ⊢ ( ( ℜ : ℂ ⟶ ℝ  ∧  𝐹 : dom  𝐹 ⟶ ℂ )  →  ( ℜ  ∘  𝐹 ) : dom  𝐹 ⟶ ℝ ) | 
						
							| 32 | 1 26 31 | sylancr | ⊢ ( 𝐹  ∈  MblFn  →  ( ℜ  ∘  𝐹 ) : dom  𝐹 ⟶ ℝ ) | 
						
							| 33 |  | mbfima | ⊢ ( ( ( ℜ  ∘  𝐹 )  ∈  MblFn  ∧  ( ℜ  ∘  𝐹 ) : dom  𝐹 ⟶ ℝ )  →  ( ◡ ( ℜ  ∘  𝐹 )  “  ( 𝑥 (,) +∞ ) )  ∈  dom  vol ) | 
						
							| 34 | 30 32 33 | syl2anc | ⊢ ( 𝐹  ∈  MblFn  →  ( ◡ ( ℜ  ∘  𝐹 )  “  ( 𝑥 (,) +∞ ) )  ∈  dom  vol ) | 
						
							| 35 |  | inmbl | ⊢ ( ( ( ◡ ( ℜ  ∘  𝐹 )  “  ( 𝑥 (,) +∞ ) )  ∈  dom  vol  ∧  𝐴  ∈  dom  vol )  →  ( ( ◡ ( ℜ  ∘  𝐹 )  “  ( 𝑥 (,) +∞ ) )  ∩  𝐴 )  ∈  dom  vol ) | 
						
							| 36 | 34 35 | sylan | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  →  ( ( ◡ ( ℜ  ∘  𝐹 )  “  ( 𝑥 (,) +∞ ) )  ∩  𝐴 )  ∈  dom  vol ) | 
						
							| 37 | 25 36 | eqeltrid | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  →  ( ◡ ( ℜ  ∘  ( 𝐹  ↾  𝐴 ) )  “  ( 𝑥 (,) +∞ ) )  ∈  dom  vol ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  ∧  𝑥  ∈  ℝ )  →  ( ◡ ( ℜ  ∘  ( 𝐹  ↾  𝐴 ) )  “  ( 𝑥 (,) +∞ ) )  ∈  dom  vol ) | 
						
							| 39 | 22 | imaeq1i | ⊢ ( ◡ ( ( ℜ  ∘  𝐹 )  ↾  𝐴 )  “  ( -∞ (,) 𝑥 ) )  =  ( ◡ ( ℜ  ∘  ( 𝐹  ↾  𝐴 ) )  “  ( -∞ (,) 𝑥 ) ) | 
						
							| 40 |  | cnvresima | ⊢ ( ◡ ( ( ℜ  ∘  𝐹 )  ↾  𝐴 )  “  ( -∞ (,) 𝑥 ) )  =  ( ( ◡ ( ℜ  ∘  𝐹 )  “  ( -∞ (,) 𝑥 ) )  ∩  𝐴 ) | 
						
							| 41 | 39 40 | eqtr3i | ⊢ ( ◡ ( ℜ  ∘  ( 𝐹  ↾  𝐴 ) )  “  ( -∞ (,) 𝑥 ) )  =  ( ( ◡ ( ℜ  ∘  𝐹 )  “  ( -∞ (,) 𝑥 ) )  ∩  𝐴 ) | 
						
							| 42 |  | mbfima | ⊢ ( ( ( ℜ  ∘  𝐹 )  ∈  MblFn  ∧  ( ℜ  ∘  𝐹 ) : dom  𝐹 ⟶ ℝ )  →  ( ◡ ( ℜ  ∘  𝐹 )  “  ( -∞ (,) 𝑥 ) )  ∈  dom  vol ) | 
						
							| 43 | 30 32 42 | syl2anc | ⊢ ( 𝐹  ∈  MblFn  →  ( ◡ ( ℜ  ∘  𝐹 )  “  ( -∞ (,) 𝑥 ) )  ∈  dom  vol ) | 
						
							| 44 |  | inmbl | ⊢ ( ( ( ◡ ( ℜ  ∘  𝐹 )  “  ( -∞ (,) 𝑥 ) )  ∈  dom  vol  ∧  𝐴  ∈  dom  vol )  →  ( ( ◡ ( ℜ  ∘  𝐹 )  “  ( -∞ (,) 𝑥 ) )  ∩  𝐴 )  ∈  dom  vol ) | 
						
							| 45 | 43 44 | sylan | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  →  ( ( ◡ ( ℜ  ∘  𝐹 )  “  ( -∞ (,) 𝑥 ) )  ∩  𝐴 )  ∈  dom  vol ) | 
						
							| 46 | 41 45 | eqeltrid | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  →  ( ◡ ( ℜ  ∘  ( 𝐹  ↾  𝐴 ) )  “  ( -∞ (,) 𝑥 ) )  ∈  dom  vol ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  ∧  𝑥  ∈  ℝ )  →  ( ◡ ( ℜ  ∘  ( 𝐹  ↾  𝐴 ) )  “  ( -∞ (,) 𝑥 ) )  ∈  dom  vol ) | 
						
							| 48 | 14 20 38 47 | ismbf2d | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  →  ( ℜ  ∘  ( 𝐹  ↾  𝐴 ) )  ∈  MblFn ) | 
						
							| 49 |  | imf | ⊢ ℑ : ℂ ⟶ ℝ | 
						
							| 50 |  | fco | ⊢ ( ( ℑ : ℂ ⟶ ℝ  ∧  ( 𝐹  ↾  𝐴 ) : dom  ( 𝐹  ↾  𝐴 ) ⟶ ℂ )  →  ( ℑ  ∘  ( 𝐹  ↾  𝐴 ) ) : dom  ( 𝐹  ↾  𝐴 ) ⟶ ℝ ) | 
						
							| 51 | 49 12 50 | sylancr | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  →  ( ℑ  ∘  ( 𝐹  ↾  𝐴 ) ) : dom  ( 𝐹  ↾  𝐴 ) ⟶ ℝ ) | 
						
							| 52 |  | resco | ⊢ ( ( ℑ  ∘  𝐹 )  ↾  𝐴 )  =  ( ℑ  ∘  ( 𝐹  ↾  𝐴 ) ) | 
						
							| 53 | 52 | cnveqi | ⊢ ◡ ( ( ℑ  ∘  𝐹 )  ↾  𝐴 )  =  ◡ ( ℑ  ∘  ( 𝐹  ↾  𝐴 ) ) | 
						
							| 54 | 53 | imaeq1i | ⊢ ( ◡ ( ( ℑ  ∘  𝐹 )  ↾  𝐴 )  “  ( 𝑥 (,) +∞ ) )  =  ( ◡ ( ℑ  ∘  ( 𝐹  ↾  𝐴 ) )  “  ( 𝑥 (,) +∞ ) ) | 
						
							| 55 |  | cnvresima | ⊢ ( ◡ ( ( ℑ  ∘  𝐹 )  ↾  𝐴 )  “  ( 𝑥 (,) +∞ ) )  =  ( ( ◡ ( ℑ  ∘  𝐹 )  “  ( 𝑥 (,) +∞ ) )  ∩  𝐴 ) | 
						
							| 56 | 54 55 | eqtr3i | ⊢ ( ◡ ( ℑ  ∘  ( 𝐹  ↾  𝐴 ) )  “  ( 𝑥 (,) +∞ ) )  =  ( ( ◡ ( ℑ  ∘  𝐹 )  “  ( 𝑥 (,) +∞ ) )  ∩  𝐴 ) | 
						
							| 57 | 29 | simprd | ⊢ ( 𝐹  ∈  MblFn  →  ( ℑ  ∘  𝐹 )  ∈  MblFn ) | 
						
							| 58 |  | fco | ⊢ ( ( ℑ : ℂ ⟶ ℝ  ∧  𝐹 : dom  𝐹 ⟶ ℂ )  →  ( ℑ  ∘  𝐹 ) : dom  𝐹 ⟶ ℝ ) | 
						
							| 59 | 49 26 58 | sylancr | ⊢ ( 𝐹  ∈  MblFn  →  ( ℑ  ∘  𝐹 ) : dom  𝐹 ⟶ ℝ ) | 
						
							| 60 |  | mbfima | ⊢ ( ( ( ℑ  ∘  𝐹 )  ∈  MblFn  ∧  ( ℑ  ∘  𝐹 ) : dom  𝐹 ⟶ ℝ )  →  ( ◡ ( ℑ  ∘  𝐹 )  “  ( 𝑥 (,) +∞ ) )  ∈  dom  vol ) | 
						
							| 61 | 57 59 60 | syl2anc | ⊢ ( 𝐹  ∈  MblFn  →  ( ◡ ( ℑ  ∘  𝐹 )  “  ( 𝑥 (,) +∞ ) )  ∈  dom  vol ) | 
						
							| 62 |  | inmbl | ⊢ ( ( ( ◡ ( ℑ  ∘  𝐹 )  “  ( 𝑥 (,) +∞ ) )  ∈  dom  vol  ∧  𝐴  ∈  dom  vol )  →  ( ( ◡ ( ℑ  ∘  𝐹 )  “  ( 𝑥 (,) +∞ ) )  ∩  𝐴 )  ∈  dom  vol ) | 
						
							| 63 | 61 62 | sylan | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  →  ( ( ◡ ( ℑ  ∘  𝐹 )  “  ( 𝑥 (,) +∞ ) )  ∩  𝐴 )  ∈  dom  vol ) | 
						
							| 64 | 56 63 | eqeltrid | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  →  ( ◡ ( ℑ  ∘  ( 𝐹  ↾  𝐴 ) )  “  ( 𝑥 (,) +∞ ) )  ∈  dom  vol ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  ∧  𝑥  ∈  ℝ )  →  ( ◡ ( ℑ  ∘  ( 𝐹  ↾  𝐴 ) )  “  ( 𝑥 (,) +∞ ) )  ∈  dom  vol ) | 
						
							| 66 | 53 | imaeq1i | ⊢ ( ◡ ( ( ℑ  ∘  𝐹 )  ↾  𝐴 )  “  ( -∞ (,) 𝑥 ) )  =  ( ◡ ( ℑ  ∘  ( 𝐹  ↾  𝐴 ) )  “  ( -∞ (,) 𝑥 ) ) | 
						
							| 67 |  | cnvresima | ⊢ ( ◡ ( ( ℑ  ∘  𝐹 )  ↾  𝐴 )  “  ( -∞ (,) 𝑥 ) )  =  ( ( ◡ ( ℑ  ∘  𝐹 )  “  ( -∞ (,) 𝑥 ) )  ∩  𝐴 ) | 
						
							| 68 | 66 67 | eqtr3i | ⊢ ( ◡ ( ℑ  ∘  ( 𝐹  ↾  𝐴 ) )  “  ( -∞ (,) 𝑥 ) )  =  ( ( ◡ ( ℑ  ∘  𝐹 )  “  ( -∞ (,) 𝑥 ) )  ∩  𝐴 ) | 
						
							| 69 |  | mbfima | ⊢ ( ( ( ℑ  ∘  𝐹 )  ∈  MblFn  ∧  ( ℑ  ∘  𝐹 ) : dom  𝐹 ⟶ ℝ )  →  ( ◡ ( ℑ  ∘  𝐹 )  “  ( -∞ (,) 𝑥 ) )  ∈  dom  vol ) | 
						
							| 70 | 57 59 69 | syl2anc | ⊢ ( 𝐹  ∈  MblFn  →  ( ◡ ( ℑ  ∘  𝐹 )  “  ( -∞ (,) 𝑥 ) )  ∈  dom  vol ) | 
						
							| 71 |  | inmbl | ⊢ ( ( ( ◡ ( ℑ  ∘  𝐹 )  “  ( -∞ (,) 𝑥 ) )  ∈  dom  vol  ∧  𝐴  ∈  dom  vol )  →  ( ( ◡ ( ℑ  ∘  𝐹 )  “  ( -∞ (,) 𝑥 ) )  ∩  𝐴 )  ∈  dom  vol ) | 
						
							| 72 | 70 71 | sylan | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  →  ( ( ◡ ( ℑ  ∘  𝐹 )  “  ( -∞ (,) 𝑥 ) )  ∩  𝐴 )  ∈  dom  vol ) | 
						
							| 73 | 68 72 | eqeltrid | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  →  ( ◡ ( ℑ  ∘  ( 𝐹  ↾  𝐴 ) )  “  ( -∞ (,) 𝑥 ) )  ∈  dom  vol ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  ∧  𝑥  ∈  ℝ )  →  ( ◡ ( ℑ  ∘  ( 𝐹  ↾  𝐴 ) )  “  ( -∞ (,) 𝑥 ) )  ∈  dom  vol ) | 
						
							| 75 | 51 20 65 74 | ismbf2d | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  →  ( ℑ  ∘  ( 𝐹  ↾  𝐴 ) )  ∈  MblFn ) | 
						
							| 76 |  | ismbfcn | ⊢ ( ( 𝐹  ↾  𝐴 ) : dom  ( 𝐹  ↾  𝐴 ) ⟶ ℂ  →  ( ( 𝐹  ↾  𝐴 )  ∈  MblFn  ↔  ( ( ℜ  ∘  ( 𝐹  ↾  𝐴 ) )  ∈  MblFn  ∧  ( ℑ  ∘  ( 𝐹  ↾  𝐴 ) )  ∈  MblFn ) ) ) | 
						
							| 77 | 12 76 | syl | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  →  ( ( 𝐹  ↾  𝐴 )  ∈  MblFn  ↔  ( ( ℜ  ∘  ( 𝐹  ↾  𝐴 ) )  ∈  MblFn  ∧  ( ℑ  ∘  ( 𝐹  ↾  𝐴 ) )  ∈  MblFn ) ) ) | 
						
							| 78 | 48 75 77 | mpbir2and | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  dom  vol )  →  ( 𝐹  ↾  𝐴 )  ∈  MblFn ) |