Step |
Hyp |
Ref |
Expression |
1 |
|
ref |
⊢ ℜ : ℂ ⟶ ℝ |
2 |
|
simpr |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → 𝐴 ∈ dom vol ) |
3 |
|
ismbf1 |
⊢ ( 𝐹 ∈ MblFn ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) |
4 |
3
|
simplbi |
⊢ ( 𝐹 ∈ MblFn → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
6 |
|
pmresg |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( ℂ ↑pm ℝ ) ) → ( 𝐹 ↾ 𝐴 ) ∈ ( ℂ ↑pm 𝐴 ) ) |
7 |
2 5 6
|
syl2anc |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( 𝐹 ↾ 𝐴 ) ∈ ( ℂ ↑pm 𝐴 ) ) |
8 |
|
cnex |
⊢ ℂ ∈ V |
9 |
|
elpm2g |
⊢ ( ( ℂ ∈ V ∧ 𝐴 ∈ dom vol ) → ( ( 𝐹 ↾ 𝐴 ) ∈ ( ℂ ↑pm 𝐴 ) ↔ ( ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℂ ∧ dom ( 𝐹 ↾ 𝐴 ) ⊆ 𝐴 ) ) ) |
10 |
8 2 9
|
sylancr |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ( 𝐹 ↾ 𝐴 ) ∈ ( ℂ ↑pm 𝐴 ) ↔ ( ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℂ ∧ dom ( 𝐹 ↾ 𝐴 ) ⊆ 𝐴 ) ) ) |
11 |
7 10
|
mpbid |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℂ ∧ dom ( 𝐹 ↾ 𝐴 ) ⊆ 𝐴 ) ) |
12 |
11
|
simpld |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℂ ) |
13 |
|
fco |
⊢ ( ( ℜ : ℂ ⟶ ℝ ∧ ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℂ ) → ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℝ ) |
14 |
1 12 13
|
sylancr |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℝ ) |
15 |
|
dmres |
⊢ dom ( 𝐹 ↾ 𝐴 ) = ( 𝐴 ∩ dom 𝐹 ) |
16 |
|
id |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ∈ dom vol ) |
17 |
|
mbfdm |
⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) |
18 |
|
inmbl |
⊢ ( ( 𝐴 ∈ dom vol ∧ dom 𝐹 ∈ dom vol ) → ( 𝐴 ∩ dom 𝐹 ) ∈ dom vol ) |
19 |
16 17 18
|
syl2anr |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( 𝐴 ∩ dom 𝐹 ) ∈ dom vol ) |
20 |
15 19
|
eqeltrid |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → dom ( 𝐹 ↾ 𝐴 ) ∈ dom vol ) |
21 |
|
resco |
⊢ ( ( ℜ ∘ 𝐹 ) ↾ 𝐴 ) = ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) |
22 |
21
|
cnveqi |
⊢ ◡ ( ( ℜ ∘ 𝐹 ) ↾ 𝐴 ) = ◡ ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) |
23 |
22
|
imaeq1i |
⊢ ( ◡ ( ( ℜ ∘ 𝐹 ) ↾ 𝐴 ) “ ( 𝑥 (,) +∞ ) ) = ( ◡ ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( 𝑥 (,) +∞ ) ) |
24 |
|
cnvresima |
⊢ ( ◡ ( ( ℜ ∘ 𝐹 ) ↾ 𝐴 ) “ ( 𝑥 (,) +∞ ) ) = ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∩ 𝐴 ) |
25 |
23 24
|
eqtr3i |
⊢ ( ◡ ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( 𝑥 (,) +∞ ) ) = ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∩ 𝐴 ) |
26 |
|
mbff |
⊢ ( 𝐹 ∈ MblFn → 𝐹 : dom 𝐹 ⟶ ℂ ) |
27 |
|
ismbfcn |
⊢ ( 𝐹 : dom 𝐹 ⟶ ℂ → ( 𝐹 ∈ MblFn ↔ ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ) ) |
28 |
26 27
|
syl |
⊢ ( 𝐹 ∈ MblFn → ( 𝐹 ∈ MblFn ↔ ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ) ) |
29 |
28
|
ibi |
⊢ ( 𝐹 ∈ MblFn → ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ) |
30 |
29
|
simpld |
⊢ ( 𝐹 ∈ MblFn → ( ℜ ∘ 𝐹 ) ∈ MblFn ) |
31 |
|
fco |
⊢ ( ( ℜ : ℂ ⟶ ℝ ∧ 𝐹 : dom 𝐹 ⟶ ℂ ) → ( ℜ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) |
32 |
1 26 31
|
sylancr |
⊢ ( 𝐹 ∈ MblFn → ( ℜ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) |
33 |
|
mbfima |
⊢ ( ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℜ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) → ( ◡ ( ℜ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
34 |
30 32 33
|
syl2anc |
⊢ ( 𝐹 ∈ MblFn → ( ◡ ( ℜ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
35 |
|
inmbl |
⊢ ( ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ∧ 𝐴 ∈ dom vol ) → ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∩ 𝐴 ) ∈ dom vol ) |
36 |
34 35
|
sylan |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∩ 𝐴 ) ∈ dom vol ) |
37 |
25 36
|
eqeltrid |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ◡ ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
38 |
37
|
adantr |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) ∧ 𝑥 ∈ ℝ ) → ( ◡ ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
39 |
22
|
imaeq1i |
⊢ ( ◡ ( ( ℜ ∘ 𝐹 ) ↾ 𝐴 ) “ ( -∞ (,) 𝑥 ) ) = ( ◡ ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( -∞ (,) 𝑥 ) ) |
40 |
|
cnvresima |
⊢ ( ◡ ( ( ℜ ∘ 𝐹 ) ↾ 𝐴 ) “ ( -∞ (,) 𝑥 ) ) = ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∩ 𝐴 ) |
41 |
39 40
|
eqtr3i |
⊢ ( ◡ ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( -∞ (,) 𝑥 ) ) = ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∩ 𝐴 ) |
42 |
|
mbfima |
⊢ ( ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℜ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) → ( ◡ ( ℜ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
43 |
30 32 42
|
syl2anc |
⊢ ( 𝐹 ∈ MblFn → ( ◡ ( ℜ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
44 |
|
inmbl |
⊢ ( ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ∧ 𝐴 ∈ dom vol ) → ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∩ 𝐴 ) ∈ dom vol ) |
45 |
43 44
|
sylan |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∩ 𝐴 ) ∈ dom vol ) |
46 |
41 45
|
eqeltrid |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ◡ ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
47 |
46
|
adantr |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) ∧ 𝑥 ∈ ℝ ) → ( ◡ ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
48 |
14 20 38 47
|
ismbf2d |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) ∈ MblFn ) |
49 |
|
imf |
⊢ ℑ : ℂ ⟶ ℝ |
50 |
|
fco |
⊢ ( ( ℑ : ℂ ⟶ ℝ ∧ ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℂ ) → ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℝ ) |
51 |
49 12 50
|
sylancr |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℝ ) |
52 |
|
resco |
⊢ ( ( ℑ ∘ 𝐹 ) ↾ 𝐴 ) = ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) |
53 |
52
|
cnveqi |
⊢ ◡ ( ( ℑ ∘ 𝐹 ) ↾ 𝐴 ) = ◡ ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) |
54 |
53
|
imaeq1i |
⊢ ( ◡ ( ( ℑ ∘ 𝐹 ) ↾ 𝐴 ) “ ( 𝑥 (,) +∞ ) ) = ( ◡ ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( 𝑥 (,) +∞ ) ) |
55 |
|
cnvresima |
⊢ ( ◡ ( ( ℑ ∘ 𝐹 ) ↾ 𝐴 ) “ ( 𝑥 (,) +∞ ) ) = ( ( ◡ ( ℑ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∩ 𝐴 ) |
56 |
54 55
|
eqtr3i |
⊢ ( ◡ ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( 𝑥 (,) +∞ ) ) = ( ( ◡ ( ℑ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∩ 𝐴 ) |
57 |
29
|
simprd |
⊢ ( 𝐹 ∈ MblFn → ( ℑ ∘ 𝐹 ) ∈ MblFn ) |
58 |
|
fco |
⊢ ( ( ℑ : ℂ ⟶ ℝ ∧ 𝐹 : dom 𝐹 ⟶ ℂ ) → ( ℑ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) |
59 |
49 26 58
|
sylancr |
⊢ ( 𝐹 ∈ MblFn → ( ℑ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) |
60 |
|
mbfima |
⊢ ( ( ( ℑ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) → ( ◡ ( ℑ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
61 |
57 59 60
|
syl2anc |
⊢ ( 𝐹 ∈ MblFn → ( ◡ ( ℑ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
62 |
|
inmbl |
⊢ ( ( ( ◡ ( ℑ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ∧ 𝐴 ∈ dom vol ) → ( ( ◡ ( ℑ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∩ 𝐴 ) ∈ dom vol ) |
63 |
61 62
|
sylan |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ( ◡ ( ℑ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∩ 𝐴 ) ∈ dom vol ) |
64 |
56 63
|
eqeltrid |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ◡ ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
65 |
64
|
adantr |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) ∧ 𝑥 ∈ ℝ ) → ( ◡ ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
66 |
53
|
imaeq1i |
⊢ ( ◡ ( ( ℑ ∘ 𝐹 ) ↾ 𝐴 ) “ ( -∞ (,) 𝑥 ) ) = ( ◡ ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( -∞ (,) 𝑥 ) ) |
67 |
|
cnvresima |
⊢ ( ◡ ( ( ℑ ∘ 𝐹 ) ↾ 𝐴 ) “ ( -∞ (,) 𝑥 ) ) = ( ( ◡ ( ℑ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∩ 𝐴 ) |
68 |
66 67
|
eqtr3i |
⊢ ( ◡ ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( -∞ (,) 𝑥 ) ) = ( ( ◡ ( ℑ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∩ 𝐴 ) |
69 |
|
mbfima |
⊢ ( ( ( ℑ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) → ( ◡ ( ℑ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
70 |
57 59 69
|
syl2anc |
⊢ ( 𝐹 ∈ MblFn → ( ◡ ( ℑ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
71 |
|
inmbl |
⊢ ( ( ( ◡ ( ℑ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ∧ 𝐴 ∈ dom vol ) → ( ( ◡ ( ℑ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∩ 𝐴 ) ∈ dom vol ) |
72 |
70 71
|
sylan |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ( ◡ ( ℑ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∩ 𝐴 ) ∈ dom vol ) |
73 |
68 72
|
eqeltrid |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ◡ ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
74 |
73
|
adantr |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) ∧ 𝑥 ∈ ℝ ) → ( ◡ ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
75 |
51 20 65 74
|
ismbf2d |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) ∈ MblFn ) |
76 |
|
ismbfcn |
⊢ ( ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℂ → ( ( 𝐹 ↾ 𝐴 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) ∈ MblFn ) ) ) |
77 |
12 76
|
syl |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ( 𝐹 ↾ 𝐴 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) ∈ MblFn ) ) ) |
78 |
48 75 77
|
mpbir2and |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( 𝐹 ↾ 𝐴 ) ∈ MblFn ) |