| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfres2.1 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℝ ) | 
						
							| 2 |  | mbfres2.2 | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐵 )  ∈  MblFn ) | 
						
							| 3 |  | mbfres2.3 | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐶 )  ∈  MblFn ) | 
						
							| 4 |  | mbfres2.4 | ⊢ ( 𝜑  →  ( 𝐵  ∪  𝐶 )  =  𝐴 ) | 
						
							| 5 | 4 | reseq2d | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( 𝐵  ∪  𝐶 ) )  =  ( 𝐹  ↾  𝐴 ) ) | 
						
							| 6 |  | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ  →  𝐹  Fn  𝐴 ) | 
						
							| 7 |  | fnresdm | ⊢ ( 𝐹  Fn  𝐴  →  ( 𝐹  ↾  𝐴 )  =  𝐹 ) | 
						
							| 8 | 1 6 7 | 3syl | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐴 )  =  𝐹 ) | 
						
							| 9 | 5 8 | eqtr2d | ⊢ ( 𝜑  →  𝐹  =  ( 𝐹  ↾  ( 𝐵  ∪  𝐶 ) ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ran  (,) )  →  𝐹  =  ( 𝐹  ↾  ( 𝐵  ∪  𝐶 ) ) ) | 
						
							| 11 |  | resundi | ⊢ ( 𝐹  ↾  ( 𝐵  ∪  𝐶 ) )  =  ( ( 𝐹  ↾  𝐵 )  ∪  ( 𝐹  ↾  𝐶 ) ) | 
						
							| 12 | 10 11 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ran  (,) )  →  𝐹  =  ( ( 𝐹  ↾  𝐵 )  ∪  ( 𝐹  ↾  𝐶 ) ) ) | 
						
							| 13 | 12 | cnveqd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ran  (,) )  →  ◡ 𝐹  =  ◡ ( ( 𝐹  ↾  𝐵 )  ∪  ( 𝐹  ↾  𝐶 ) ) ) | 
						
							| 14 |  | cnvun | ⊢ ◡ ( ( 𝐹  ↾  𝐵 )  ∪  ( 𝐹  ↾  𝐶 ) )  =  ( ◡ ( 𝐹  ↾  𝐵 )  ∪  ◡ ( 𝐹  ↾  𝐶 ) ) | 
						
							| 15 | 13 14 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ran  (,) )  →  ◡ 𝐹  =  ( ◡ ( 𝐹  ↾  𝐵 )  ∪  ◡ ( 𝐹  ↾  𝐶 ) ) ) | 
						
							| 16 | 15 | imaeq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ran  (,) )  →  ( ◡ 𝐹  “  𝑥 )  =  ( ( ◡ ( 𝐹  ↾  𝐵 )  ∪  ◡ ( 𝐹  ↾  𝐶 ) )  “  𝑥 ) ) | 
						
							| 17 |  | imaundir | ⊢ ( ( ◡ ( 𝐹  ↾  𝐵 )  ∪  ◡ ( 𝐹  ↾  𝐶 ) )  “  𝑥 )  =  ( ( ◡ ( 𝐹  ↾  𝐵 )  “  𝑥 )  ∪  ( ◡ ( 𝐹  ↾  𝐶 )  “  𝑥 ) ) | 
						
							| 18 | 16 17 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ran  (,) )  →  ( ◡ 𝐹  “  𝑥 )  =  ( ( ◡ ( 𝐹  ↾  𝐵 )  “  𝑥 )  ∪  ( ◡ ( 𝐹  ↾  𝐶 )  “  𝑥 ) ) ) | 
						
							| 19 |  | ssun1 | ⊢ 𝐵  ⊆  ( 𝐵  ∪  𝐶 ) | 
						
							| 20 | 19 4 | sseqtrid | ⊢ ( 𝜑  →  𝐵  ⊆  𝐴 ) | 
						
							| 21 | 1 20 | fssresd | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐵 ) : 𝐵 ⟶ ℝ ) | 
						
							| 22 |  | ismbf | ⊢ ( ( 𝐹  ↾  𝐵 ) : 𝐵 ⟶ ℝ  →  ( ( 𝐹  ↾  𝐵 )  ∈  MblFn  ↔  ∀ 𝑥  ∈  ran  (,) ( ◡ ( 𝐹  ↾  𝐵 )  “  𝑥 )  ∈  dom  vol ) ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  𝐵 )  ∈  MblFn  ↔  ∀ 𝑥  ∈  ran  (,) ( ◡ ( 𝐹  ↾  𝐵 )  “  𝑥 )  ∈  dom  vol ) ) | 
						
							| 24 | 2 23 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ran  (,) ( ◡ ( 𝐹  ↾  𝐵 )  “  𝑥 )  ∈  dom  vol ) | 
						
							| 25 | 24 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ran  (,) )  →  ( ◡ ( 𝐹  ↾  𝐵 )  “  𝑥 )  ∈  dom  vol ) | 
						
							| 26 |  | ssun2 | ⊢ 𝐶  ⊆  ( 𝐵  ∪  𝐶 ) | 
						
							| 27 | 26 4 | sseqtrid | ⊢ ( 𝜑  →  𝐶  ⊆  𝐴 ) | 
						
							| 28 | 1 27 | fssresd | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐶 ) : 𝐶 ⟶ ℝ ) | 
						
							| 29 |  | ismbf | ⊢ ( ( 𝐹  ↾  𝐶 ) : 𝐶 ⟶ ℝ  →  ( ( 𝐹  ↾  𝐶 )  ∈  MblFn  ↔  ∀ 𝑥  ∈  ran  (,) ( ◡ ( 𝐹  ↾  𝐶 )  “  𝑥 )  ∈  dom  vol ) ) | 
						
							| 30 | 28 29 | syl | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  𝐶 )  ∈  MblFn  ↔  ∀ 𝑥  ∈  ran  (,) ( ◡ ( 𝐹  ↾  𝐶 )  “  𝑥 )  ∈  dom  vol ) ) | 
						
							| 31 | 3 30 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ran  (,) ( ◡ ( 𝐹  ↾  𝐶 )  “  𝑥 )  ∈  dom  vol ) | 
						
							| 32 | 31 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ran  (,) )  →  ( ◡ ( 𝐹  ↾  𝐶 )  “  𝑥 )  ∈  dom  vol ) | 
						
							| 33 |  | unmbl | ⊢ ( ( ( ◡ ( 𝐹  ↾  𝐵 )  “  𝑥 )  ∈  dom  vol  ∧  ( ◡ ( 𝐹  ↾  𝐶 )  “  𝑥 )  ∈  dom  vol )  →  ( ( ◡ ( 𝐹  ↾  𝐵 )  “  𝑥 )  ∪  ( ◡ ( 𝐹  ↾  𝐶 )  “  𝑥 ) )  ∈  dom  vol ) | 
						
							| 34 | 25 32 33 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ran  (,) )  →  ( ( ◡ ( 𝐹  ↾  𝐵 )  “  𝑥 )  ∪  ( ◡ ( 𝐹  ↾  𝐶 )  “  𝑥 ) )  ∈  dom  vol ) | 
						
							| 35 | 18 34 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ran  (,) )  →  ( ◡ 𝐹  “  𝑥 )  ∈  dom  vol ) | 
						
							| 36 | 35 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ran  (,) ( ◡ 𝐹  “  𝑥 )  ∈  dom  vol ) | 
						
							| 37 |  | ismbf | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ  →  ( 𝐹  ∈  MblFn  ↔  ∀ 𝑥  ∈  ran  (,) ( ◡ 𝐹  “  𝑥 )  ∈  dom  vol ) ) | 
						
							| 38 | 1 37 | syl | ⊢ ( 𝜑  →  ( 𝐹  ∈  MblFn  ↔  ∀ 𝑥  ∈  ran  (,) ( ◡ 𝐹  “  𝑥 )  ∈  dom  vol ) ) | 
						
							| 39 | 36 38 | mpbird | ⊢ ( 𝜑  →  𝐹  ∈  MblFn ) |