Step |
Hyp |
Ref |
Expression |
1 |
|
mbfres2cn.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
2 |
|
mbfres2cn.b |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) ∈ MblFn ) |
3 |
|
mbfres2cn.c |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) ∈ MblFn ) |
4 |
|
mbfres2cn.a |
⊢ ( 𝜑 → ( 𝐵 ∪ 𝐶 ) = 𝐴 ) |
5 |
|
ref |
⊢ ℜ : ℂ ⟶ ℝ |
6 |
|
fco |
⊢ ( ( ℜ : ℂ ⟶ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( ℜ ∘ 𝐹 ) : 𝐴 ⟶ ℝ ) |
7 |
5 1 6
|
sylancr |
⊢ ( 𝜑 → ( ℜ ∘ 𝐹 ) : 𝐴 ⟶ ℝ ) |
8 |
|
resco |
⊢ ( ( ℜ ∘ 𝐹 ) ↾ 𝐵 ) = ( ℜ ∘ ( 𝐹 ↾ 𝐵 ) ) |
9 |
|
fresin |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ↾ 𝐵 ) : ( 𝐴 ∩ 𝐵 ) ⟶ ℂ ) |
10 |
|
ismbfcn |
⊢ ( ( 𝐹 ↾ 𝐵 ) : ( 𝐴 ∩ 𝐵 ) ⟶ ℂ → ( ( 𝐹 ↾ 𝐵 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝐹 ↾ 𝐵 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝐹 ↾ 𝐵 ) ) ∈ MblFn ) ) ) |
11 |
1 9 10
|
3syl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐵 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝐹 ↾ 𝐵 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝐹 ↾ 𝐵 ) ) ∈ MblFn ) ) ) |
12 |
2 11
|
mpbid |
⊢ ( 𝜑 → ( ( ℜ ∘ ( 𝐹 ↾ 𝐵 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝐹 ↾ 𝐵 ) ) ∈ MblFn ) ) |
13 |
12
|
simpld |
⊢ ( 𝜑 → ( ℜ ∘ ( 𝐹 ↾ 𝐵 ) ) ∈ MblFn ) |
14 |
8 13
|
eqeltrid |
⊢ ( 𝜑 → ( ( ℜ ∘ 𝐹 ) ↾ 𝐵 ) ∈ MblFn ) |
15 |
|
resco |
⊢ ( ( ℜ ∘ 𝐹 ) ↾ 𝐶 ) = ( ℜ ∘ ( 𝐹 ↾ 𝐶 ) ) |
16 |
|
fresin |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ↾ 𝐶 ) : ( 𝐴 ∩ 𝐶 ) ⟶ ℂ ) |
17 |
|
ismbfcn |
⊢ ( ( 𝐹 ↾ 𝐶 ) : ( 𝐴 ∩ 𝐶 ) ⟶ ℂ → ( ( 𝐹 ↾ 𝐶 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝐹 ↾ 𝐶 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝐹 ↾ 𝐶 ) ) ∈ MblFn ) ) ) |
18 |
1 16 17
|
3syl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐶 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝐹 ↾ 𝐶 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝐹 ↾ 𝐶 ) ) ∈ MblFn ) ) ) |
19 |
3 18
|
mpbid |
⊢ ( 𝜑 → ( ( ℜ ∘ ( 𝐹 ↾ 𝐶 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝐹 ↾ 𝐶 ) ) ∈ MblFn ) ) |
20 |
19
|
simpld |
⊢ ( 𝜑 → ( ℜ ∘ ( 𝐹 ↾ 𝐶 ) ) ∈ MblFn ) |
21 |
15 20
|
eqeltrid |
⊢ ( 𝜑 → ( ( ℜ ∘ 𝐹 ) ↾ 𝐶 ) ∈ MblFn ) |
22 |
7 14 21 4
|
mbfres2 |
⊢ ( 𝜑 → ( ℜ ∘ 𝐹 ) ∈ MblFn ) |
23 |
|
imf |
⊢ ℑ : ℂ ⟶ ℝ |
24 |
|
fco |
⊢ ( ( ℑ : ℂ ⟶ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( ℑ ∘ 𝐹 ) : 𝐴 ⟶ ℝ ) |
25 |
23 1 24
|
sylancr |
⊢ ( 𝜑 → ( ℑ ∘ 𝐹 ) : 𝐴 ⟶ ℝ ) |
26 |
|
resco |
⊢ ( ( ℑ ∘ 𝐹 ) ↾ 𝐵 ) = ( ℑ ∘ ( 𝐹 ↾ 𝐵 ) ) |
27 |
12
|
simprd |
⊢ ( 𝜑 → ( ℑ ∘ ( 𝐹 ↾ 𝐵 ) ) ∈ MblFn ) |
28 |
26 27
|
eqeltrid |
⊢ ( 𝜑 → ( ( ℑ ∘ 𝐹 ) ↾ 𝐵 ) ∈ MblFn ) |
29 |
|
resco |
⊢ ( ( ℑ ∘ 𝐹 ) ↾ 𝐶 ) = ( ℑ ∘ ( 𝐹 ↾ 𝐶 ) ) |
30 |
19
|
simprd |
⊢ ( 𝜑 → ( ℑ ∘ ( 𝐹 ↾ 𝐶 ) ) ∈ MblFn ) |
31 |
29 30
|
eqeltrid |
⊢ ( 𝜑 → ( ( ℑ ∘ 𝐹 ) ↾ 𝐶 ) ∈ MblFn ) |
32 |
25 28 31 4
|
mbfres2 |
⊢ ( 𝜑 → ( ℑ ∘ 𝐹 ) ∈ MblFn ) |
33 |
|
ismbfcn |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ∈ MblFn ↔ ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ) ) |
34 |
1 33
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∈ MblFn ↔ ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ) ) |
35 |
22 32 34
|
mpbir2and |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |