Metamath Proof Explorer


Theorem mbfres2cn

Description: Measurability of a piecewise function: if F is measurable on subsets B and C of its domain, and these pieces make up all of A , then F is measurable on the whole domain. Similar to mbfres2 but here the theorem is extended to complex-valued functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses mbfres2cn.f ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
mbfres2cn.b ( 𝜑 → ( 𝐹𝐵 ) ∈ MblFn )
mbfres2cn.c ( 𝜑 → ( 𝐹𝐶 ) ∈ MblFn )
mbfres2cn.a ( 𝜑 → ( 𝐵𝐶 ) = 𝐴 )
Assertion mbfres2cn ( 𝜑𝐹 ∈ MblFn )

Proof

Step Hyp Ref Expression
1 mbfres2cn.f ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
2 mbfres2cn.b ( 𝜑 → ( 𝐹𝐵 ) ∈ MblFn )
3 mbfres2cn.c ( 𝜑 → ( 𝐹𝐶 ) ∈ MblFn )
4 mbfres2cn.a ( 𝜑 → ( 𝐵𝐶 ) = 𝐴 )
5 ref ℜ : ℂ ⟶ ℝ
6 fco ( ( ℜ : ℂ ⟶ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( ℜ ∘ 𝐹 ) : 𝐴 ⟶ ℝ )
7 5 1 6 sylancr ( 𝜑 → ( ℜ ∘ 𝐹 ) : 𝐴 ⟶ ℝ )
8 resco ( ( ℜ ∘ 𝐹 ) ↾ 𝐵 ) = ( ℜ ∘ ( 𝐹𝐵 ) )
9 fresin ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹𝐵 ) : ( 𝐴𝐵 ) ⟶ ℂ )
10 ismbfcn ( ( 𝐹𝐵 ) : ( 𝐴𝐵 ) ⟶ ℂ → ( ( 𝐹𝐵 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝐹𝐵 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝐹𝐵 ) ) ∈ MblFn ) ) )
11 1 9 10 3syl ( 𝜑 → ( ( 𝐹𝐵 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝐹𝐵 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝐹𝐵 ) ) ∈ MblFn ) ) )
12 2 11 mpbid ( 𝜑 → ( ( ℜ ∘ ( 𝐹𝐵 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝐹𝐵 ) ) ∈ MblFn ) )
13 12 simpld ( 𝜑 → ( ℜ ∘ ( 𝐹𝐵 ) ) ∈ MblFn )
14 8 13 eqeltrid ( 𝜑 → ( ( ℜ ∘ 𝐹 ) ↾ 𝐵 ) ∈ MblFn )
15 resco ( ( ℜ ∘ 𝐹 ) ↾ 𝐶 ) = ( ℜ ∘ ( 𝐹𝐶 ) )
16 fresin ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹𝐶 ) : ( 𝐴𝐶 ) ⟶ ℂ )
17 ismbfcn ( ( 𝐹𝐶 ) : ( 𝐴𝐶 ) ⟶ ℂ → ( ( 𝐹𝐶 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝐹𝐶 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝐹𝐶 ) ) ∈ MblFn ) ) )
18 1 16 17 3syl ( 𝜑 → ( ( 𝐹𝐶 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝐹𝐶 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝐹𝐶 ) ) ∈ MblFn ) ) )
19 3 18 mpbid ( 𝜑 → ( ( ℜ ∘ ( 𝐹𝐶 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝐹𝐶 ) ) ∈ MblFn ) )
20 19 simpld ( 𝜑 → ( ℜ ∘ ( 𝐹𝐶 ) ) ∈ MblFn )
21 15 20 eqeltrid ( 𝜑 → ( ( ℜ ∘ 𝐹 ) ↾ 𝐶 ) ∈ MblFn )
22 7 14 21 4 mbfres2 ( 𝜑 → ( ℜ ∘ 𝐹 ) ∈ MblFn )
23 imf ℑ : ℂ ⟶ ℝ
24 fco ( ( ℑ : ℂ ⟶ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( ℑ ∘ 𝐹 ) : 𝐴 ⟶ ℝ )
25 23 1 24 sylancr ( 𝜑 → ( ℑ ∘ 𝐹 ) : 𝐴 ⟶ ℝ )
26 resco ( ( ℑ ∘ 𝐹 ) ↾ 𝐵 ) = ( ℑ ∘ ( 𝐹𝐵 ) )
27 12 simprd ( 𝜑 → ( ℑ ∘ ( 𝐹𝐵 ) ) ∈ MblFn )
28 26 27 eqeltrid ( 𝜑 → ( ( ℑ ∘ 𝐹 ) ↾ 𝐵 ) ∈ MblFn )
29 resco ( ( ℑ ∘ 𝐹 ) ↾ 𝐶 ) = ( ℑ ∘ ( 𝐹𝐶 ) )
30 19 simprd ( 𝜑 → ( ℑ ∘ ( 𝐹𝐶 ) ) ∈ MblFn )
31 29 30 eqeltrid ( 𝜑 → ( ( ℑ ∘ 𝐹 ) ↾ 𝐶 ) ∈ MblFn )
32 25 28 31 4 mbfres2 ( 𝜑 → ( ℑ ∘ 𝐹 ) ∈ MblFn )
33 ismbfcn ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ∈ MblFn ↔ ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ) )
34 1 33 syl ( 𝜑 → ( 𝐹 ∈ MblFn ↔ ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ) )
35 22 32 34 mpbir2and ( 𝜑𝐹 ∈ MblFn )