| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfres2cn.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 2 |  | mbfres2cn.b | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐵 )  ∈  MblFn ) | 
						
							| 3 |  | mbfres2cn.c | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐶 )  ∈  MblFn ) | 
						
							| 4 |  | mbfres2cn.a | ⊢ ( 𝜑  →  ( 𝐵  ∪  𝐶 )  =  𝐴 ) | 
						
							| 5 |  | ref | ⊢ ℜ : ℂ ⟶ ℝ | 
						
							| 6 |  | fco | ⊢ ( ( ℜ : ℂ ⟶ ℝ  ∧  𝐹 : 𝐴 ⟶ ℂ )  →  ( ℜ  ∘  𝐹 ) : 𝐴 ⟶ ℝ ) | 
						
							| 7 | 5 1 6 | sylancr | ⊢ ( 𝜑  →  ( ℜ  ∘  𝐹 ) : 𝐴 ⟶ ℝ ) | 
						
							| 8 |  | resco | ⊢ ( ( ℜ  ∘  𝐹 )  ↾  𝐵 )  =  ( ℜ  ∘  ( 𝐹  ↾  𝐵 ) ) | 
						
							| 9 |  | fresin | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ  →  ( 𝐹  ↾  𝐵 ) : ( 𝐴  ∩  𝐵 ) ⟶ ℂ ) | 
						
							| 10 |  | ismbfcn | ⊢ ( ( 𝐹  ↾  𝐵 ) : ( 𝐴  ∩  𝐵 ) ⟶ ℂ  →  ( ( 𝐹  ↾  𝐵 )  ∈  MblFn  ↔  ( ( ℜ  ∘  ( 𝐹  ↾  𝐵 ) )  ∈  MblFn  ∧  ( ℑ  ∘  ( 𝐹  ↾  𝐵 ) )  ∈  MblFn ) ) ) | 
						
							| 11 | 1 9 10 | 3syl | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  𝐵 )  ∈  MblFn  ↔  ( ( ℜ  ∘  ( 𝐹  ↾  𝐵 ) )  ∈  MblFn  ∧  ( ℑ  ∘  ( 𝐹  ↾  𝐵 ) )  ∈  MblFn ) ) ) | 
						
							| 12 | 2 11 | mpbid | ⊢ ( 𝜑  →  ( ( ℜ  ∘  ( 𝐹  ↾  𝐵 ) )  ∈  MblFn  ∧  ( ℑ  ∘  ( 𝐹  ↾  𝐵 ) )  ∈  MblFn ) ) | 
						
							| 13 | 12 | simpld | ⊢ ( 𝜑  →  ( ℜ  ∘  ( 𝐹  ↾  𝐵 ) )  ∈  MblFn ) | 
						
							| 14 | 8 13 | eqeltrid | ⊢ ( 𝜑  →  ( ( ℜ  ∘  𝐹 )  ↾  𝐵 )  ∈  MblFn ) | 
						
							| 15 |  | resco | ⊢ ( ( ℜ  ∘  𝐹 )  ↾  𝐶 )  =  ( ℜ  ∘  ( 𝐹  ↾  𝐶 ) ) | 
						
							| 16 |  | fresin | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ  →  ( 𝐹  ↾  𝐶 ) : ( 𝐴  ∩  𝐶 ) ⟶ ℂ ) | 
						
							| 17 |  | ismbfcn | ⊢ ( ( 𝐹  ↾  𝐶 ) : ( 𝐴  ∩  𝐶 ) ⟶ ℂ  →  ( ( 𝐹  ↾  𝐶 )  ∈  MblFn  ↔  ( ( ℜ  ∘  ( 𝐹  ↾  𝐶 ) )  ∈  MblFn  ∧  ( ℑ  ∘  ( 𝐹  ↾  𝐶 ) )  ∈  MblFn ) ) ) | 
						
							| 18 | 1 16 17 | 3syl | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  𝐶 )  ∈  MblFn  ↔  ( ( ℜ  ∘  ( 𝐹  ↾  𝐶 ) )  ∈  MblFn  ∧  ( ℑ  ∘  ( 𝐹  ↾  𝐶 ) )  ∈  MblFn ) ) ) | 
						
							| 19 | 3 18 | mpbid | ⊢ ( 𝜑  →  ( ( ℜ  ∘  ( 𝐹  ↾  𝐶 ) )  ∈  MblFn  ∧  ( ℑ  ∘  ( 𝐹  ↾  𝐶 ) )  ∈  MblFn ) ) | 
						
							| 20 | 19 | simpld | ⊢ ( 𝜑  →  ( ℜ  ∘  ( 𝐹  ↾  𝐶 ) )  ∈  MblFn ) | 
						
							| 21 | 15 20 | eqeltrid | ⊢ ( 𝜑  →  ( ( ℜ  ∘  𝐹 )  ↾  𝐶 )  ∈  MblFn ) | 
						
							| 22 | 7 14 21 4 | mbfres2 | ⊢ ( 𝜑  →  ( ℜ  ∘  𝐹 )  ∈  MblFn ) | 
						
							| 23 |  | imf | ⊢ ℑ : ℂ ⟶ ℝ | 
						
							| 24 |  | fco | ⊢ ( ( ℑ : ℂ ⟶ ℝ  ∧  𝐹 : 𝐴 ⟶ ℂ )  →  ( ℑ  ∘  𝐹 ) : 𝐴 ⟶ ℝ ) | 
						
							| 25 | 23 1 24 | sylancr | ⊢ ( 𝜑  →  ( ℑ  ∘  𝐹 ) : 𝐴 ⟶ ℝ ) | 
						
							| 26 |  | resco | ⊢ ( ( ℑ  ∘  𝐹 )  ↾  𝐵 )  =  ( ℑ  ∘  ( 𝐹  ↾  𝐵 ) ) | 
						
							| 27 | 12 | simprd | ⊢ ( 𝜑  →  ( ℑ  ∘  ( 𝐹  ↾  𝐵 ) )  ∈  MblFn ) | 
						
							| 28 | 26 27 | eqeltrid | ⊢ ( 𝜑  →  ( ( ℑ  ∘  𝐹 )  ↾  𝐵 )  ∈  MblFn ) | 
						
							| 29 |  | resco | ⊢ ( ( ℑ  ∘  𝐹 )  ↾  𝐶 )  =  ( ℑ  ∘  ( 𝐹  ↾  𝐶 ) ) | 
						
							| 30 | 19 | simprd | ⊢ ( 𝜑  →  ( ℑ  ∘  ( 𝐹  ↾  𝐶 ) )  ∈  MblFn ) | 
						
							| 31 | 29 30 | eqeltrid | ⊢ ( 𝜑  →  ( ( ℑ  ∘  𝐹 )  ↾  𝐶 )  ∈  MblFn ) | 
						
							| 32 | 25 28 31 4 | mbfres2 | ⊢ ( 𝜑  →  ( ℑ  ∘  𝐹 )  ∈  MblFn ) | 
						
							| 33 |  | ismbfcn | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ  →  ( 𝐹  ∈  MblFn  ↔  ( ( ℜ  ∘  𝐹 )  ∈  MblFn  ∧  ( ℑ  ∘  𝐹 )  ∈  MblFn ) ) ) | 
						
							| 34 | 1 33 | syl | ⊢ ( 𝜑  →  ( 𝐹  ∈  MblFn  ↔  ( ( ℜ  ∘  𝐹 )  ∈  MblFn  ∧  ( ℑ  ∘  𝐹 )  ∈  MblFn ) ) ) | 
						
							| 35 | 22 32 34 | mpbir2and | ⊢ ( 𝜑  →  𝐹  ∈  MblFn ) |