Step |
Hyp |
Ref |
Expression |
1 |
|
mbfss.1 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
2 |
|
mbfss.2 |
⊢ ( 𝜑 → 𝐵 ∈ dom vol ) |
3 |
|
mbfss.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) |
4 |
|
mbfss.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 0 ) |
5 |
|
mbfss.5 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
6 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) ) |
7 |
|
undif2 |
⊢ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = ( 𝐴 ∪ 𝐵 ) |
8 |
|
ssequn1 |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∪ 𝐵 ) = 𝐵 ) |
9 |
1 8
|
sylib |
⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) = 𝐵 ) |
10 |
7 9
|
syl5eq |
⊢ ( 𝜑 → ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) |
11 |
10
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ↔ 𝑥 ∈ 𝐵 ) ) |
12 |
6 11
|
bitr3id |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) ↔ 𝑥 ∈ 𝐵 ) ) |
13 |
12
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) ) |
14 |
5 3
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
15 |
|
0cn |
⊢ 0 ∈ ℂ |
16 |
4 15
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 ∈ ℂ ) |
17 |
14 16
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) ) → 𝐶 ∈ ℂ ) |
18 |
13 17
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
19 |
18
|
recld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ℜ ‘ 𝐶 ) ∈ ℝ ) |
20 |
19
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐶 ) ) : 𝐵 ⟶ ℝ ) |
21 |
1
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐶 ) ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ) |
22 |
14
|
ismbfcn2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ∈ MblFn ) ) ) |
23 |
5 22
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ∈ MblFn ) ) |
24 |
23
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ∈ MblFn ) |
25 |
21 24
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐶 ) ) ↾ 𝐴 ) ∈ MblFn ) |
26 |
|
difss |
⊢ ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 |
27 |
|
resmpt |
⊢ ( ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐶 ) ) ↾ ( 𝐵 ∖ 𝐴 ) ) = ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↦ ( ℜ ‘ 𝐶 ) ) ) |
28 |
26 27
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐶 ) ) ↾ ( 𝐵 ∖ 𝐴 ) ) = ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↦ ( ℜ ‘ 𝐶 ) ) |
29 |
4
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ℜ ‘ 𝐶 ) = ( ℜ ‘ 0 ) ) |
30 |
|
re0 |
⊢ ( ℜ ‘ 0 ) = 0 |
31 |
29 30
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ℜ ‘ 𝐶 ) = 0 ) |
32 |
31
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↦ ( ℜ ‘ 𝐶 ) ) = ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 0 ) ) |
33 |
28 32
|
syl5eq |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐶 ) ) ↾ ( 𝐵 ∖ 𝐴 ) ) = ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 0 ) ) |
34 |
|
fconstmpt |
⊢ ( ( 𝐵 ∖ 𝐴 ) × { 0 } ) = ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 0 ) |
35 |
5 3
|
mbfdm2 |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
36 |
|
difmbl |
⊢ ( ( 𝐵 ∈ dom vol ∧ 𝐴 ∈ dom vol ) → ( 𝐵 ∖ 𝐴 ) ∈ dom vol ) |
37 |
2 35 36
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝐴 ) ∈ dom vol ) |
38 |
|
mbfconst |
⊢ ( ( ( 𝐵 ∖ 𝐴 ) ∈ dom vol ∧ 0 ∈ ℂ ) → ( ( 𝐵 ∖ 𝐴 ) × { 0 } ) ∈ MblFn ) |
39 |
37 15 38
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐵 ∖ 𝐴 ) × { 0 } ) ∈ MblFn ) |
40 |
34 39
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 0 ) ∈ MblFn ) |
41 |
33 40
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐶 ) ) ↾ ( 𝐵 ∖ 𝐴 ) ) ∈ MblFn ) |
42 |
20 25 41 10
|
mbfres2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐶 ) ) ∈ MblFn ) |
43 |
18
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ℑ ‘ 𝐶 ) ∈ ℝ ) |
44 |
43
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐶 ) ) : 𝐵 ⟶ ℝ ) |
45 |
1
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐶 ) ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ) |
46 |
23
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ∈ MblFn ) |
47 |
45 46
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐶 ) ) ↾ 𝐴 ) ∈ MblFn ) |
48 |
|
resmpt |
⊢ ( ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐶 ) ) ↾ ( 𝐵 ∖ 𝐴 ) ) = ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↦ ( ℑ ‘ 𝐶 ) ) ) |
49 |
26 48
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐶 ) ) ↾ ( 𝐵 ∖ 𝐴 ) ) = ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↦ ( ℑ ‘ 𝐶 ) ) |
50 |
4
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ℑ ‘ 𝐶 ) = ( ℑ ‘ 0 ) ) |
51 |
|
im0 |
⊢ ( ℑ ‘ 0 ) = 0 |
52 |
50 51
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ℑ ‘ 𝐶 ) = 0 ) |
53 |
52
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↦ ( ℑ ‘ 𝐶 ) ) = ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 0 ) ) |
54 |
49 53
|
syl5eq |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐶 ) ) ↾ ( 𝐵 ∖ 𝐴 ) ) = ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 0 ) ) |
55 |
54 40
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐶 ) ) ↾ ( 𝐵 ∖ 𝐴 ) ) ∈ MblFn ) |
56 |
44 47 55 10
|
mbfres2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐶 ) ) ∈ MblFn ) |
57 |
18
|
ismbfcn2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐶 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐶 ) ) ∈ MblFn ) ) ) |
58 |
42 56 57
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ) |