Step |
Hyp |
Ref |
Expression |
1 |
|
mbfadd.1 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
2 |
|
mbfadd.2 |
⊢ ( 𝜑 → 𝐺 ∈ MblFn ) |
3 |
|
mbff |
⊢ ( 𝐹 ∈ MblFn → 𝐹 : dom 𝐹 ⟶ ℂ ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℂ ) |
5 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → 𝑥 ∈ dom 𝐹 ) |
6 |
|
ffvelrn |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
7 |
4 5 6
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
8 |
|
mbff |
⊢ ( 𝐺 ∈ MblFn → 𝐺 : dom 𝐺 ⟶ ℂ ) |
9 |
2 8
|
syl |
⊢ ( 𝜑 → 𝐺 : dom 𝐺 ⟶ ℂ ) |
10 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → 𝑥 ∈ dom 𝐺 ) |
11 |
|
ffvelrn |
⊢ ( ( 𝐺 : dom 𝐺 ⟶ ℂ ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
12 |
9 10 11
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
13 |
7 12
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( 𝐹 ‘ 𝑥 ) + - ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) |
14 |
13
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) + - ( 𝐺 ‘ 𝑥 ) ) ) |
15 |
14
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) + - ( 𝐺 ‘ 𝑥 ) ) ) ) |
16 |
4
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn dom 𝐹 ) |
17 |
9
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn dom 𝐺 ) |
18 |
|
mbfdm |
⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) |
19 |
1 18
|
syl |
⊢ ( 𝜑 → dom 𝐹 ∈ dom vol ) |
20 |
|
mbfdm |
⊢ ( 𝐺 ∈ MblFn → dom 𝐺 ∈ dom vol ) |
21 |
2 20
|
syl |
⊢ ( 𝜑 → dom 𝐺 ∈ dom vol ) |
22 |
|
eqid |
⊢ ( dom 𝐹 ∩ dom 𝐺 ) = ( dom 𝐹 ∩ dom 𝐺 ) |
23 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
24 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
25 |
16 17 19 21 22 23 24
|
offval |
⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐺 ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ) |
26 |
|
inmbl |
⊢ ( ( dom 𝐹 ∈ dom vol ∧ dom 𝐺 ∈ dom vol ) → ( dom 𝐹 ∩ dom 𝐺 ) ∈ dom vol ) |
27 |
19 21 26
|
syl2anc |
⊢ ( 𝜑 → ( dom 𝐹 ∩ dom 𝐺 ) ∈ dom vol ) |
28 |
12
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → - ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
29 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
30 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ - ( 𝐺 ‘ 𝑥 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ - ( 𝐺 ‘ 𝑥 ) ) ) |
31 |
27 7 28 29 30
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∘f + ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ - ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) + - ( 𝐺 ‘ 𝑥 ) ) ) ) |
32 |
15 25 31
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐺 ) = ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∘f + ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ - ( 𝐺 ‘ 𝑥 ) ) ) ) |
33 |
|
inss1 |
⊢ ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐹 |
34 |
|
resmpt |
⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐹 → ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
35 |
33 34
|
mp1i |
⊢ ( 𝜑 → ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
36 |
4
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
37 |
36 1
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ) |
38 |
|
mbfres |
⊢ ( ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ∧ ( dom 𝐹 ∩ dom 𝐺 ) ∈ dom vol ) → ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ∈ MblFn ) |
39 |
37 27 38
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ∈ MblFn ) |
40 |
35 39
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ) |
41 |
|
inss2 |
⊢ ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐺 |
42 |
|
resmpt |
⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐺 → ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
43 |
41 42
|
mp1i |
⊢ ( 𝜑 → ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
44 |
9
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
45 |
44 2
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ MblFn ) |
46 |
|
mbfres |
⊢ ( ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ MblFn ∧ ( dom 𝐹 ∩ dom 𝐺 ) ∈ dom vol ) → ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ∈ MblFn ) |
47 |
45 27 46
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ∈ MblFn ) |
48 |
43 47
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ MblFn ) |
49 |
12 48
|
mbfneg |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ - ( 𝐺 ‘ 𝑥 ) ) ∈ MblFn ) |
50 |
40 49
|
mbfadd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∘f + ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ - ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ) |
51 |
32 50
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐺 ) ∈ MblFn ) |