| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfadd.1 | ⊢ ( 𝜑  →  𝐹  ∈  MblFn ) | 
						
							| 2 |  | mbfadd.2 | ⊢ ( 𝜑  →  𝐺  ∈  MblFn ) | 
						
							| 3 |  | mbff | ⊢ ( 𝐹  ∈  MblFn  →  𝐹 : dom  𝐹 ⟶ ℂ ) | 
						
							| 4 | 1 3 | syl | ⊢ ( 𝜑  →  𝐹 : dom  𝐹 ⟶ ℂ ) | 
						
							| 5 |  | elinel1 | ⊢ ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  →  𝑥  ∈  dom  𝐹 ) | 
						
							| 6 |  | ffvelcdm | ⊢ ( ( 𝐹 : dom  𝐹 ⟶ ℂ  ∧  𝑥  ∈  dom  𝐹 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 8 |  | mbff | ⊢ ( 𝐺  ∈  MblFn  →  𝐺 : dom  𝐺 ⟶ ℂ ) | 
						
							| 9 | 2 8 | syl | ⊢ ( 𝜑  →  𝐺 : dom  𝐺 ⟶ ℂ ) | 
						
							| 10 |  | elinel2 | ⊢ ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  →  𝑥  ∈  dom  𝐺 ) | 
						
							| 11 |  | ffvelcdm | ⊢ ( ( 𝐺 : dom  𝐺 ⟶ ℂ  ∧  𝑥  ∈  dom  𝐺 )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 12 | 9 10 11 | syl2an | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 13 | 7 12 | negsubd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( ( 𝐹 ‘ 𝑥 )  +  - ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 14 | 13 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 )  +  - ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 15 | 14 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( 𝐹 ‘ 𝑥 )  +  - ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 16 | 4 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  dom  𝐹 ) | 
						
							| 17 | 9 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  dom  𝐺 ) | 
						
							| 18 |  | mbfdm | ⊢ ( 𝐹  ∈  MblFn  →  dom  𝐹  ∈  dom  vol ) | 
						
							| 19 | 1 18 | syl | ⊢ ( 𝜑  →  dom  𝐹  ∈  dom  vol ) | 
						
							| 20 |  | mbfdm | ⊢ ( 𝐺  ∈  MblFn  →  dom  𝐺  ∈  dom  vol ) | 
						
							| 21 | 2 20 | syl | ⊢ ( 𝜑  →  dom  𝐺  ∈  dom  vol ) | 
						
							| 22 |  | eqid | ⊢ ( dom  𝐹  ∩  dom  𝐺 )  =  ( dom  𝐹  ∩  dom  𝐺 ) | 
						
							| 23 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  𝐹 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 24 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  𝐺 )  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 25 | 16 17 19 21 22 23 24 | offval | ⊢ ( 𝜑  →  ( 𝐹  ∘f   −  𝐺 )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 26 |  | inmbl | ⊢ ( ( dom  𝐹  ∈  dom  vol  ∧  dom  𝐺  ∈  dom  vol )  →  ( dom  𝐹  ∩  dom  𝐺 )  ∈  dom  vol ) | 
						
							| 27 | 19 21 26 | syl2anc | ⊢ ( 𝜑  →  ( dom  𝐹  ∩  dom  𝐺 )  ∈  dom  vol ) | 
						
							| 28 | 12 | negcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  - ( 𝐺 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 29 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐹 ‘ 𝑥 ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 30 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  - ( 𝐺 ‘ 𝑥 ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  - ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 31 | 27 7 28 29 30 | offval2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∘f   +  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  - ( 𝐺 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( 𝐹 ‘ 𝑥 )  +  - ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 32 | 15 25 31 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝐹  ∘f   −  𝐺 )  =  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∘f   +  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  - ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 33 |  | inss1 | ⊢ ( dom  𝐹  ∩  dom  𝐺 )  ⊆  dom  𝐹 | 
						
							| 34 |  | resmpt | ⊢ ( ( dom  𝐹  ∩  dom  𝐺 )  ⊆  dom  𝐹  →  ( ( 𝑥  ∈  dom  𝐹  ↦  ( 𝐹 ‘ 𝑥 ) )  ↾  ( dom  𝐹  ∩  dom  𝐺 ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 35 | 33 34 | mp1i | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  dom  𝐹  ↦  ( 𝐹 ‘ 𝑥 ) )  ↾  ( dom  𝐹  ∩  dom  𝐺 ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 36 | 4 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  dom  𝐹  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 37 | 36 1 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  dom  𝐹  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  MblFn ) | 
						
							| 38 |  | mbfres | ⊢ ( ( ( 𝑥  ∈  dom  𝐹  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  MblFn  ∧  ( dom  𝐹  ∩  dom  𝐺 )  ∈  dom  vol )  →  ( ( 𝑥  ∈  dom  𝐹  ↦  ( 𝐹 ‘ 𝑥 ) )  ↾  ( dom  𝐹  ∩  dom  𝐺 ) )  ∈  MblFn ) | 
						
							| 39 | 37 27 38 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  dom  𝐹  ↦  ( 𝐹 ‘ 𝑥 ) )  ↾  ( dom  𝐹  ∩  dom  𝐺 ) )  ∈  MblFn ) | 
						
							| 40 | 35 39 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  MblFn ) | 
						
							| 41 |  | inss2 | ⊢ ( dom  𝐹  ∩  dom  𝐺 )  ⊆  dom  𝐺 | 
						
							| 42 |  | resmpt | ⊢ ( ( dom  𝐹  ∩  dom  𝐺 )  ⊆  dom  𝐺  →  ( ( 𝑥  ∈  dom  𝐺  ↦  ( 𝐺 ‘ 𝑥 ) )  ↾  ( dom  𝐹  ∩  dom  𝐺 ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 43 | 41 42 | mp1i | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  dom  𝐺  ↦  ( 𝐺 ‘ 𝑥 ) )  ↾  ( dom  𝐹  ∩  dom  𝐺 ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 44 | 9 | feqmptd | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  dom  𝐺  ↦  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 45 | 44 2 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  dom  𝐺  ↦  ( 𝐺 ‘ 𝑥 ) )  ∈  MblFn ) | 
						
							| 46 |  | mbfres | ⊢ ( ( ( 𝑥  ∈  dom  𝐺  ↦  ( 𝐺 ‘ 𝑥 ) )  ∈  MblFn  ∧  ( dom  𝐹  ∩  dom  𝐺 )  ∈  dom  vol )  →  ( ( 𝑥  ∈  dom  𝐺  ↦  ( 𝐺 ‘ 𝑥 ) )  ↾  ( dom  𝐹  ∩  dom  𝐺 ) )  ∈  MblFn ) | 
						
							| 47 | 45 27 46 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  dom  𝐺  ↦  ( 𝐺 ‘ 𝑥 ) )  ↾  ( dom  𝐹  ∩  dom  𝐺 ) )  ∈  MblFn ) | 
						
							| 48 | 43 47 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐺 ‘ 𝑥 ) )  ∈  MblFn ) | 
						
							| 49 | 12 48 | mbfneg | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  - ( 𝐺 ‘ 𝑥 ) )  ∈  MblFn ) | 
						
							| 50 | 40 49 | mbfadd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∘f   +  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  - ( 𝐺 ‘ 𝑥 ) ) )  ∈  MblFn ) | 
						
							| 51 | 32 50 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐹  ∘f   −  𝐺 )  ∈  MblFn ) |