| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfsup.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | mbfsup.2 | ⊢ 𝐺  =  ( 𝑥  ∈  𝐴  ↦  sup ( ran  ( 𝑛  ∈  𝑍  ↦  𝐵 ) ,  ℝ ,   <  ) ) | 
						
							| 3 |  | mbfsup.3 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | mbfsup.4 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 5 |  | mbfsup.5 | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  𝑍  ∧  𝑥  ∈  𝐴 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 6 |  | mbfsup.6 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝐵  ≤  𝑦 ) | 
						
							| 7 | 5 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 8 | 7 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑛  ∈  𝑍 )  →  𝐵  ∈  ℝ ) | 
						
							| 9 | 8 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑛  ∈  𝑍  ↦  𝐵 ) : 𝑍 ⟶ ℝ ) | 
						
							| 10 | 9 | frnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ran  ( 𝑛  ∈  𝑍  ↦  𝐵 )  ⊆  ℝ ) | 
						
							| 11 |  | uzid | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 12 | 3 11 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 13 | 12 1 | eleqtrrdi | ⊢ ( 𝜑  →  𝑀  ∈  𝑍 ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑀  ∈  𝑍 ) | 
						
							| 15 |  | eqid | ⊢ ( 𝑛  ∈  𝑍  ↦  𝐵 )  =  ( 𝑛  ∈  𝑍  ↦  𝐵 ) | 
						
							| 16 | 15 8 | dmmptd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  dom  ( 𝑛  ∈  𝑍  ↦  𝐵 )  =  𝑍 ) | 
						
							| 17 | 14 16 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑀  ∈  dom  ( 𝑛  ∈  𝑍  ↦  𝐵 ) ) | 
						
							| 18 | 17 | ne0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  dom  ( 𝑛  ∈  𝑍  ↦  𝐵 )  ≠  ∅ ) | 
						
							| 19 |  | dm0rn0 | ⊢ ( dom  ( 𝑛  ∈  𝑍  ↦  𝐵 )  =  ∅  ↔  ran  ( 𝑛  ∈  𝑍  ↦  𝐵 )  =  ∅ ) | 
						
							| 20 | 19 | necon3bii | ⊢ ( dom  ( 𝑛  ∈  𝑍  ↦  𝐵 )  ≠  ∅  ↔  ran  ( 𝑛  ∈  𝑍  ↦  𝐵 )  ≠  ∅ ) | 
						
							| 21 | 18 20 | sylib | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ran  ( 𝑛  ∈  𝑍  ↦  𝐵 )  ≠  ∅ ) | 
						
							| 22 | 9 | ffnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑛  ∈  𝑍  ↦  𝐵 )  Fn  𝑍 ) | 
						
							| 23 |  | breq1 | ⊢ ( 𝑧  =  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑚 )  →  ( 𝑧  ≤  𝑦  ↔  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑚 )  ≤  𝑦 ) ) | 
						
							| 24 | 23 | ralrn | ⊢ ( ( 𝑛  ∈  𝑍  ↦  𝐵 )  Fn  𝑍  →  ( ∀ 𝑧  ∈  ran  ( 𝑛  ∈  𝑍  ↦  𝐵 ) 𝑧  ≤  𝑦  ↔  ∀ 𝑚  ∈  𝑍 ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑚 )  ≤  𝑦 ) ) | 
						
							| 25 | 22 24 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ∀ 𝑧  ∈  ran  ( 𝑛  ∈  𝑍  ↦  𝐵 ) 𝑧  ≤  𝑦  ↔  ∀ 𝑚  ∈  𝑍 ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑚 )  ≤  𝑦 ) ) | 
						
							| 26 |  | nffvmpt1 | ⊢ Ⅎ 𝑛 ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑚 ) | 
						
							| 27 |  | nfcv | ⊢ Ⅎ 𝑛  ≤ | 
						
							| 28 |  | nfcv | ⊢ Ⅎ 𝑛 𝑦 | 
						
							| 29 | 26 27 28 | nfbr | ⊢ Ⅎ 𝑛 ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑚 )  ≤  𝑦 | 
						
							| 30 |  | nfv | ⊢ Ⅎ 𝑚 ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 )  ≤  𝑦 | 
						
							| 31 |  | fveq2 | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑚 )  =  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 ) ) | 
						
							| 32 | 31 | breq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑚 )  ≤  𝑦  ↔  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 )  ≤  𝑦 ) ) | 
						
							| 33 | 29 30 32 | cbvralw | ⊢ ( ∀ 𝑚  ∈  𝑍 ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑚 )  ≤  𝑦  ↔  ∀ 𝑛  ∈  𝑍 ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 )  ≤  𝑦 ) | 
						
							| 34 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑛  ∈  𝑍 )  →  𝑛  ∈  𝑍 ) | 
						
							| 35 | 15 | fvmpt2 | ⊢ ( ( 𝑛  ∈  𝑍  ∧  𝐵  ∈  ℝ )  →  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 )  =  𝐵 ) | 
						
							| 36 | 34 8 35 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 )  =  𝐵 ) | 
						
							| 37 | 36 | breq1d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑛  ∈  𝑍 )  →  ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 )  ≤  𝑦  ↔  𝐵  ≤  𝑦 ) ) | 
						
							| 38 | 37 | ralbidva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ∀ 𝑛  ∈  𝑍 ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 )  ≤  𝑦  ↔  ∀ 𝑛  ∈  𝑍 𝐵  ≤  𝑦 ) ) | 
						
							| 39 | 33 38 | bitrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ∀ 𝑚  ∈  𝑍 ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑚 )  ≤  𝑦  ↔  ∀ 𝑛  ∈  𝑍 𝐵  ≤  𝑦 ) ) | 
						
							| 40 | 25 39 | bitrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ∀ 𝑧  ∈  ran  ( 𝑛  ∈  𝑍  ↦  𝐵 ) 𝑧  ≤  𝑦  ↔  ∀ 𝑛  ∈  𝑍 𝐵  ≤  𝑦 ) ) | 
						
							| 41 | 40 | rexbidv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  ran  ( 𝑛  ∈  𝑍  ↦  𝐵 ) 𝑧  ≤  𝑦  ↔  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝐵  ≤  𝑦 ) ) | 
						
							| 42 | 6 41 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  ran  ( 𝑛  ∈  𝑍  ↦  𝐵 ) 𝑧  ≤  𝑦 ) | 
						
							| 43 | 10 21 42 | suprcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  sup ( ran  ( 𝑛  ∈  𝑍  ↦  𝐵 ) ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 44 | 43 2 | fmptd | ⊢ ( 𝜑  →  𝐺 : 𝐴 ⟶ ℝ ) | 
						
							| 45 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ℝ )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 46 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 47 | 46 | supex | ⊢ sup ( ran  ( 𝑛  ∈  𝑍  ↦  𝐵 ) ,  ℝ ,   <  )  ∈  V | 
						
							| 48 | 2 | fvmpt2 | ⊢ ( ( 𝑥  ∈  𝐴  ∧  sup ( ran  ( 𝑛  ∈  𝑍  ↦  𝐵 ) ,  ℝ ,   <  )  ∈  V )  →  ( 𝐺 ‘ 𝑥 )  =  sup ( ran  ( 𝑛  ∈  𝑍  ↦  𝐵 ) ,  ℝ ,   <  ) ) | 
						
							| 49 | 45 47 48 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ℝ )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑥 )  =  sup ( ran  ( 𝑛  ∈  𝑍  ↦  𝐵 ) ,  ℝ ,   <  ) ) | 
						
							| 50 | 49 | breq2d | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ℝ )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑡  <  ( 𝐺 ‘ 𝑥 )  ↔  𝑡  <  sup ( ran  ( 𝑛  ∈  𝑍  ↦  𝐵 ) ,  ℝ ,   <  ) ) ) | 
						
							| 51 | 10 21 42 | 3jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ran  ( 𝑛  ∈  𝑍  ↦  𝐵 )  ⊆  ℝ  ∧  ran  ( 𝑛  ∈  𝑍  ↦  𝐵 )  ≠  ∅  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  ran  ( 𝑛  ∈  𝑍  ↦  𝐵 ) 𝑧  ≤  𝑦 ) ) | 
						
							| 52 | 51 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ℝ )  ∧  𝑥  ∈  𝐴 )  →  ( ran  ( 𝑛  ∈  𝑍  ↦  𝐵 )  ⊆  ℝ  ∧  ran  ( 𝑛  ∈  𝑍  ↦  𝐵 )  ≠  ∅  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  ran  ( 𝑛  ∈  𝑍  ↦  𝐵 ) 𝑧  ≤  𝑦 ) ) | 
						
							| 53 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ℝ )  ∧  𝑥  ∈  𝐴 )  →  𝑡  ∈  ℝ ) | 
						
							| 54 |  | suprlub | ⊢ ( ( ( ran  ( 𝑛  ∈  𝑍  ↦  𝐵 )  ⊆  ℝ  ∧  ran  ( 𝑛  ∈  𝑍  ↦  𝐵 )  ≠  ∅  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  ran  ( 𝑛  ∈  𝑍  ↦  𝐵 ) 𝑧  ≤  𝑦 )  ∧  𝑡  ∈  ℝ )  →  ( 𝑡  <  sup ( ran  ( 𝑛  ∈  𝑍  ↦  𝐵 ) ,  ℝ ,   <  )  ↔  ∃ 𝑧  ∈  ran  ( 𝑛  ∈  𝑍  ↦  𝐵 ) 𝑡  <  𝑧 ) ) | 
						
							| 55 | 52 53 54 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ℝ )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑡  <  sup ( ran  ( 𝑛  ∈  𝑍  ↦  𝐵 ) ,  ℝ ,   <  )  ↔  ∃ 𝑧  ∈  ran  ( 𝑛  ∈  𝑍  ↦  𝐵 ) 𝑡  <  𝑧 ) ) | 
						
							| 56 | 22 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ℝ )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑛  ∈  𝑍  ↦  𝐵 )  Fn  𝑍 ) | 
						
							| 57 |  | breq2 | ⊢ ( 𝑧  =  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑚 )  →  ( 𝑡  <  𝑧  ↔  𝑡  <  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑚 ) ) ) | 
						
							| 58 | 57 | rexrn | ⊢ ( ( 𝑛  ∈  𝑍  ↦  𝐵 )  Fn  𝑍  →  ( ∃ 𝑧  ∈  ran  ( 𝑛  ∈  𝑍  ↦  𝐵 ) 𝑡  <  𝑧  ↔  ∃ 𝑚  ∈  𝑍 𝑡  <  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑚 ) ) ) | 
						
							| 59 | 56 58 | syl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ℝ )  ∧  𝑥  ∈  𝐴 )  →  ( ∃ 𝑧  ∈  ran  ( 𝑛  ∈  𝑍  ↦  𝐵 ) 𝑡  <  𝑧  ↔  ∃ 𝑚  ∈  𝑍 𝑡  <  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑚 ) ) ) | 
						
							| 60 |  | nfcv | ⊢ Ⅎ 𝑛 𝑡 | 
						
							| 61 |  | nfcv | ⊢ Ⅎ 𝑛  < | 
						
							| 62 | 60 61 26 | nfbr | ⊢ Ⅎ 𝑛 𝑡  <  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑚 ) | 
						
							| 63 |  | nfv | ⊢ Ⅎ 𝑚 𝑡  <  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 ) | 
						
							| 64 | 31 | breq2d | ⊢ ( 𝑚  =  𝑛  →  ( 𝑡  <  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑚 )  ↔  𝑡  <  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 ) ) ) | 
						
							| 65 | 62 63 64 | cbvrexw | ⊢ ( ∃ 𝑚  ∈  𝑍 𝑡  <  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑚 )  ↔  ∃ 𝑛  ∈  𝑍 𝑡  <  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 ) ) | 
						
							| 66 | 15 | fvmpt2i | ⊢ ( 𝑛  ∈  𝑍  →  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 )  =  (  I  ‘ 𝐵 ) ) | 
						
							| 67 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 68 | 67 | fvmpt2i | ⊢ ( 𝑥  ∈  𝐴  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  =  (  I  ‘ 𝐵 ) ) | 
						
							| 69 | 68 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  =  (  I  ‘ 𝐵 ) ) | 
						
							| 70 | 69 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  (  I  ‘ 𝐵 )  =  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ) | 
						
							| 71 | 66 70 | sylan9eqr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 )  =  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ) | 
						
							| 72 | 71 | breq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑛  ∈  𝑍 )  →  ( 𝑡  <  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 )  ↔  𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ) ) | 
						
							| 73 | 72 | rexbidva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ∃ 𝑛  ∈  𝑍 𝑡  <  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 )  ↔  ∃ 𝑛  ∈  𝑍 𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ) ) | 
						
							| 74 | 73 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ℝ )  ∧  𝑥  ∈  𝐴 )  →  ( ∃ 𝑛  ∈  𝑍 𝑡  <  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 )  ↔  ∃ 𝑛  ∈  𝑍 𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ) ) | 
						
							| 75 | 65 74 | bitrid | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ℝ )  ∧  𝑥  ∈  𝐴 )  →  ( ∃ 𝑚  ∈  𝑍 𝑡  <  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑚 )  ↔  ∃ 𝑛  ∈  𝑍 𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ) ) | 
						
							| 76 | 59 75 | bitrd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ℝ )  ∧  𝑥  ∈  𝐴 )  →  ( ∃ 𝑧  ∈  ran  ( 𝑛  ∈  𝑍  ↦  𝐵 ) 𝑡  <  𝑧  ↔  ∃ 𝑛  ∈  𝑍 𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ) ) | 
						
							| 77 | 50 55 76 | 3bitrd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ℝ )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑡  <  ( 𝐺 ‘ 𝑥 )  ↔  ∃ 𝑛  ∈  𝑍 𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ) ) | 
						
							| 78 | 77 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ )  →  ∀ 𝑥  ∈  𝐴 ( 𝑡  <  ( 𝐺 ‘ 𝑥 )  ↔  ∃ 𝑛  ∈  𝑍 𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ) ) | 
						
							| 79 |  | nfv | ⊢ Ⅎ 𝑧 ( 𝑡  <  ( 𝐺 ‘ 𝑥 )  ↔  ∃ 𝑛  ∈  𝑍 𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ) | 
						
							| 80 |  | nfcv | ⊢ Ⅎ 𝑥 𝑡 | 
						
							| 81 |  | nfcv | ⊢ Ⅎ 𝑥  < | 
						
							| 82 |  | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥  ∈  𝐴  ↦  sup ( ran  ( 𝑛  ∈  𝑍  ↦  𝐵 ) ,  ℝ ,   <  ) ) | 
						
							| 83 | 2 82 | nfcxfr | ⊢ Ⅎ 𝑥 𝐺 | 
						
							| 84 |  | nfcv | ⊢ Ⅎ 𝑥 𝑧 | 
						
							| 85 | 83 84 | nffv | ⊢ Ⅎ 𝑥 ( 𝐺 ‘ 𝑧 ) | 
						
							| 86 | 80 81 85 | nfbr | ⊢ Ⅎ 𝑥 𝑡  <  ( 𝐺 ‘ 𝑧 ) | 
						
							| 87 |  | nfcv | ⊢ Ⅎ 𝑥 𝑍 | 
						
							| 88 |  | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 ) | 
						
							| 89 | 80 81 88 | nfbr | ⊢ Ⅎ 𝑥 𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 ) | 
						
							| 90 | 87 89 | nfrexw | ⊢ Ⅎ 𝑥 ∃ 𝑛  ∈  𝑍 𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 ) | 
						
							| 91 | 86 90 | nfbi | ⊢ Ⅎ 𝑥 ( 𝑡  <  ( 𝐺 ‘ 𝑧 )  ↔  ∃ 𝑛  ∈  𝑍 𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 ) ) | 
						
							| 92 |  | fveq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 93 | 92 | breq2d | ⊢ ( 𝑥  =  𝑧  →  ( 𝑡  <  ( 𝐺 ‘ 𝑥 )  ↔  𝑡  <  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 94 |  | fveq2 | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 ) ) | 
						
							| 95 | 94 | breq2d | ⊢ ( 𝑥  =  𝑧  →  ( 𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  ↔  𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 ) ) ) | 
						
							| 96 | 95 | rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑛  ∈  𝑍 𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  ↔  ∃ 𝑛  ∈  𝑍 𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 ) ) ) | 
						
							| 97 | 93 96 | bibi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑡  <  ( 𝐺 ‘ 𝑥 )  ↔  ∃ 𝑛  ∈  𝑍 𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) )  ↔  ( 𝑡  <  ( 𝐺 ‘ 𝑧 )  ↔  ∃ 𝑛  ∈  𝑍 𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 ) ) ) ) | 
						
							| 98 | 79 91 97 | cbvralw | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝑡  <  ( 𝐺 ‘ 𝑥 )  ↔  ∃ 𝑛  ∈  𝑍 𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) )  ↔  ∀ 𝑧  ∈  𝐴 ( 𝑡  <  ( 𝐺 ‘ 𝑧 )  ↔  ∃ 𝑛  ∈  𝑍 𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 ) ) ) | 
						
							| 99 | 78 98 | sylib | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ )  →  ∀ 𝑧  ∈  𝐴 ( 𝑡  <  ( 𝐺 ‘ 𝑧 )  ↔  ∃ 𝑛  ∈  𝑍 𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 ) ) ) | 
						
							| 100 | 99 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ℝ )  ∧  𝑧  ∈  𝐴 )  →  ( 𝑡  <  ( 𝐺 ‘ 𝑧 )  ↔  ∃ 𝑛  ∈  𝑍 𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 ) ) ) | 
						
							| 101 | 44 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ )  →  𝐺 : 𝐴 ⟶ ℝ ) | 
						
							| 102 | 101 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ℝ )  ∧  𝑧  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 103 |  | rexr | ⊢ ( 𝑡  ∈  ℝ  →  𝑡  ∈  ℝ* ) | 
						
							| 104 | 103 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ℝ )  ∧  𝑧  ∈  𝐴 )  →  𝑡  ∈  ℝ* ) | 
						
							| 105 |  | elioopnf | ⊢ ( 𝑡  ∈  ℝ*  →  ( ( 𝐺 ‘ 𝑧 )  ∈  ( 𝑡 (,) +∞ )  ↔  ( ( 𝐺 ‘ 𝑧 )  ∈  ℝ  ∧  𝑡  <  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 106 | 104 105 | syl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ℝ )  ∧  𝑧  ∈  𝐴 )  →  ( ( 𝐺 ‘ 𝑧 )  ∈  ( 𝑡 (,) +∞ )  ↔  ( ( 𝐺 ‘ 𝑧 )  ∈  ℝ  ∧  𝑡  <  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 107 | 102 106 | mpbirand | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ℝ )  ∧  𝑧  ∈  𝐴 )  →  ( ( 𝐺 ‘ 𝑧 )  ∈  ( 𝑡 (,) +∞ )  ↔  𝑡  <  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 108 | 104 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  ℝ )  ∧  𝑧  ∈  𝐴 )  ∧  𝑛  ∈  𝑍 )  →  𝑡  ∈  ℝ* ) | 
						
							| 109 |  | elioopnf | ⊢ ( 𝑡  ∈  ℝ*  →  ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 )  ∈  ( 𝑡 (,) +∞ )  ↔  ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 )  ∈  ℝ  ∧  𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 ) ) ) ) | 
						
							| 110 | 108 109 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  ℝ )  ∧  𝑧  ∈  𝐴 )  ∧  𝑛  ∈  𝑍 )  →  ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 )  ∈  ( 𝑡 (,) +∞ )  ↔  ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 )  ∈  ℝ  ∧  𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 ) ) ) ) | 
						
							| 111 | 7 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ℝ ) | 
						
							| 112 | 111 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑧  ∈  𝐴 )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 113 | 112 | biantrurd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑧  ∈  𝐴 )  →  ( 𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 )  ↔  ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 )  ∈  ℝ  ∧  𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 ) ) ) ) | 
						
							| 114 | 113 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐴 )  ∧  𝑛  ∈  𝑍 )  →  ( 𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 )  ↔  ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 )  ∈  ℝ  ∧  𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 ) ) ) ) | 
						
							| 115 | 114 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  ℝ )  ∧  𝑧  ∈  𝐴 )  ∧  𝑛  ∈  𝑍 )  →  ( 𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 )  ↔  ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 )  ∈  ℝ  ∧  𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 ) ) ) ) | 
						
							| 116 | 110 115 | bitr4d | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  ℝ )  ∧  𝑧  ∈  𝐴 )  ∧  𝑛  ∈  𝑍 )  →  ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 )  ∈  ( 𝑡 (,) +∞ )  ↔  𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 ) ) ) | 
						
							| 117 | 116 | rexbidva | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ℝ )  ∧  𝑧  ∈  𝐴 )  →  ( ∃ 𝑛  ∈  𝑍 ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 )  ∈  ( 𝑡 (,) +∞ )  ↔  ∃ 𝑛  ∈  𝑍 𝑡  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 ) ) ) | 
						
							| 118 | 100 107 117 | 3bitr4d | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ℝ )  ∧  𝑧  ∈  𝐴 )  →  ( ( 𝐺 ‘ 𝑧 )  ∈  ( 𝑡 (,) +∞ )  ↔  ∃ 𝑛  ∈  𝑍 ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 )  ∈  ( 𝑡 (,) +∞ ) ) ) | 
						
							| 119 | 118 | pm5.32da | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ )  →  ( ( 𝑧  ∈  𝐴  ∧  ( 𝐺 ‘ 𝑧 )  ∈  ( 𝑡 (,) +∞ ) )  ↔  ( 𝑧  ∈  𝐴  ∧  ∃ 𝑛  ∈  𝑍 ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 )  ∈  ( 𝑡 (,) +∞ ) ) ) ) | 
						
							| 120 | 44 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  𝐴 ) | 
						
							| 121 | 120 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ )  →  𝐺  Fn  𝐴 ) | 
						
							| 122 |  | elpreima | ⊢ ( 𝐺  Fn  𝐴  →  ( 𝑧  ∈  ( ◡ 𝐺  “  ( 𝑡 (,) +∞ ) )  ↔  ( 𝑧  ∈  𝐴  ∧  ( 𝐺 ‘ 𝑧 )  ∈  ( 𝑡 (,) +∞ ) ) ) ) | 
						
							| 123 | 121 122 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ )  →  ( 𝑧  ∈  ( ◡ 𝐺  “  ( 𝑡 (,) +∞ ) )  ↔  ( 𝑧  ∈  𝐴  ∧  ( 𝐺 ‘ 𝑧 )  ∈  ( 𝑡 (,) +∞ ) ) ) ) | 
						
							| 124 |  | eliun | ⊢ ( 𝑧  ∈  ∪  𝑛  ∈  𝑍 ( ◡ ( 𝑥  ∈  𝐴  ↦  𝐵 )  “  ( 𝑡 (,) +∞ ) )  ↔  ∃ 𝑛  ∈  𝑍 𝑧  ∈  ( ◡ ( 𝑥  ∈  𝐴  ↦  𝐵 )  “  ( 𝑡 (,) +∞ ) ) ) | 
						
							| 125 | 111 | ffnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴 ) | 
						
							| 126 |  | elpreima | ⊢ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴  →  ( 𝑧  ∈  ( ◡ ( 𝑥  ∈  𝐴  ↦  𝐵 )  “  ( 𝑡 (,) +∞ ) )  ↔  ( 𝑧  ∈  𝐴  ∧  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 )  ∈  ( 𝑡 (,) +∞ ) ) ) ) | 
						
							| 127 | 125 126 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑧  ∈  ( ◡ ( 𝑥  ∈  𝐴  ↦  𝐵 )  “  ( 𝑡 (,) +∞ ) )  ↔  ( 𝑧  ∈  𝐴  ∧  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 )  ∈  ( 𝑡 (,) +∞ ) ) ) ) | 
						
							| 128 | 127 | rexbidva | ⊢ ( 𝜑  →  ( ∃ 𝑛  ∈  𝑍 𝑧  ∈  ( ◡ ( 𝑥  ∈  𝐴  ↦  𝐵 )  “  ( 𝑡 (,) +∞ ) )  ↔  ∃ 𝑛  ∈  𝑍 ( 𝑧  ∈  𝐴  ∧  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 )  ∈  ( 𝑡 (,) +∞ ) ) ) ) | 
						
							| 129 | 128 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ )  →  ( ∃ 𝑛  ∈  𝑍 𝑧  ∈  ( ◡ ( 𝑥  ∈  𝐴  ↦  𝐵 )  “  ( 𝑡 (,) +∞ ) )  ↔  ∃ 𝑛  ∈  𝑍 ( 𝑧  ∈  𝐴  ∧  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 )  ∈  ( 𝑡 (,) +∞ ) ) ) ) | 
						
							| 130 |  | r19.42v | ⊢ ( ∃ 𝑛  ∈  𝑍 ( 𝑧  ∈  𝐴  ∧  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 )  ∈  ( 𝑡 (,) +∞ ) )  ↔  ( 𝑧  ∈  𝐴  ∧  ∃ 𝑛  ∈  𝑍 ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 )  ∈  ( 𝑡 (,) +∞ ) ) ) | 
						
							| 131 | 129 130 | bitrdi | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ )  →  ( ∃ 𝑛  ∈  𝑍 𝑧  ∈  ( ◡ ( 𝑥  ∈  𝐴  ↦  𝐵 )  “  ( 𝑡 (,) +∞ ) )  ↔  ( 𝑧  ∈  𝐴  ∧  ∃ 𝑛  ∈  𝑍 ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 )  ∈  ( 𝑡 (,) +∞ ) ) ) ) | 
						
							| 132 | 124 131 | bitrid | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ )  →  ( 𝑧  ∈  ∪  𝑛  ∈  𝑍 ( ◡ ( 𝑥  ∈  𝐴  ↦  𝐵 )  “  ( 𝑡 (,) +∞ ) )  ↔  ( 𝑧  ∈  𝐴  ∧  ∃ 𝑛  ∈  𝑍 ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑧 )  ∈  ( 𝑡 (,) +∞ ) ) ) ) | 
						
							| 133 | 119 123 132 | 3bitr4d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ )  →  ( 𝑧  ∈  ( ◡ 𝐺  “  ( 𝑡 (,) +∞ ) )  ↔  𝑧  ∈  ∪  𝑛  ∈  𝑍 ( ◡ ( 𝑥  ∈  𝐴  ↦  𝐵 )  “  ( 𝑡 (,) +∞ ) ) ) ) | 
						
							| 134 | 133 | eqrdv | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ )  →  ( ◡ 𝐺  “  ( 𝑡 (,) +∞ ) )  =  ∪  𝑛  ∈  𝑍 ( ◡ ( 𝑥  ∈  𝐴  ↦  𝐵 )  “  ( 𝑡 (,) +∞ ) ) ) | 
						
							| 135 |  | zex | ⊢ ℤ  ∈  V | 
						
							| 136 |  | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 )  ⊆  ℤ | 
						
							| 137 |  | ssdomg | ⊢ ( ℤ  ∈  V  →  ( ( ℤ≥ ‘ 𝑀 )  ⊆  ℤ  →  ( ℤ≥ ‘ 𝑀 )  ≼  ℤ ) ) | 
						
							| 138 | 135 136 137 | mp2 | ⊢ ( ℤ≥ ‘ 𝑀 )  ≼  ℤ | 
						
							| 139 | 1 138 | eqbrtri | ⊢ 𝑍  ≼  ℤ | 
						
							| 140 |  | znnen | ⊢ ℤ  ≈  ℕ | 
						
							| 141 |  | domentr | ⊢ ( ( 𝑍  ≼  ℤ  ∧  ℤ  ≈  ℕ )  →  𝑍  ≼  ℕ ) | 
						
							| 142 | 139 140 141 | mp2an | ⊢ 𝑍  ≼  ℕ | 
						
							| 143 |  | mbfima | ⊢ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ℝ )  →  ( ◡ ( 𝑥  ∈  𝐴  ↦  𝐵 )  “  ( 𝑡 (,) +∞ ) )  ∈  dom  vol ) | 
						
							| 144 | 4 111 143 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ◡ ( 𝑥  ∈  𝐴  ↦  𝐵 )  “  ( 𝑡 (,) +∞ ) )  ∈  dom  vol ) | 
						
							| 145 | 144 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝑥  ∈  𝐴  ↦  𝐵 )  “  ( 𝑡 (,) +∞ ) )  ∈  dom  vol ) | 
						
							| 146 | 145 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ )  →  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝑥  ∈  𝐴  ↦  𝐵 )  “  ( 𝑡 (,) +∞ ) )  ∈  dom  vol ) | 
						
							| 147 |  | iunmbl2 | ⊢ ( ( 𝑍  ≼  ℕ  ∧  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝑥  ∈  𝐴  ↦  𝐵 )  “  ( 𝑡 (,) +∞ ) )  ∈  dom  vol )  →  ∪  𝑛  ∈  𝑍 ( ◡ ( 𝑥  ∈  𝐴  ↦  𝐵 )  “  ( 𝑡 (,) +∞ ) )  ∈  dom  vol ) | 
						
							| 148 | 142 146 147 | sylancr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ )  →  ∪  𝑛  ∈  𝑍 ( ◡ ( 𝑥  ∈  𝐴  ↦  𝐵 )  “  ( 𝑡 (,) +∞ ) )  ∈  dom  vol ) | 
						
							| 149 | 134 148 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ )  →  ( ◡ 𝐺  “  ( 𝑡 (,) +∞ ) )  ∈  dom  vol ) | 
						
							| 150 | 44 149 | ismbf3d | ⊢ ( 𝜑  →  𝐺  ∈  MblFn ) |