Step |
Hyp |
Ref |
Expression |
1 |
|
mbfulm.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
mbfulm.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
mbfulm.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ MblFn ) |
4 |
|
mbfulm.u |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) |
5 |
|
ulmcl |
⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐺 : 𝑆 ⟶ ℂ ) |
6 |
4 5
|
syl |
⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℂ ) |
7 |
6
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑧 ∈ 𝑆 ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
8 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑀 ∈ ℤ ) |
9 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑍 ) |
10 |
|
ulmf2 |
⊢ ( ( 𝐹 Fn 𝑍 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
11 |
9 4 10
|
syl2anc |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝑆 ) |
14 |
1
|
fvexi |
⊢ 𝑍 ∈ V |
15 |
14
|
mptex |
⊢ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ∈ V |
16 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ∈ V ) |
17 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) |
18 |
17
|
fveq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) |
19 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
20 |
|
fvex |
⊢ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ∈ V |
21 |
18 19 20
|
fvmpt |
⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) |
22 |
21
|
eqcomd |
⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) = ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ‘ 𝑛 ) ) |
23 |
22
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) = ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ‘ 𝑛 ) ) |
24 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) |
25 |
1 8 12 13 16 23 24
|
ulmclm |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ⇝ ( 𝐺 ‘ 𝑧 ) ) |
26 |
11
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
27 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) |
28 |
26 27
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) |
29 |
28
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝑧 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
30 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ MblFn ) |
31 |
29 30
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑧 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ∈ MblFn ) |
32 |
28
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
33 |
32
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
34 |
1 2 25 31 33
|
mbflim |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑆 ↦ ( 𝐺 ‘ 𝑧 ) ) ∈ MblFn ) |
35 |
7 34
|
eqeltrd |
⊢ ( 𝜑 → 𝐺 ∈ MblFn ) |