Metamath Proof Explorer


Theorem mblss

Description: A measurable set is a subset of the reals. (Contributed by Mario Carneiro, 17-Mar-2014)

Ref Expression
Assertion mblss ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ )

Proof

Step Hyp Ref Expression
1 ismbl ( 𝐴 ∈ dom vol ↔ ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥𝐴 ) ) + ( vol* ‘ ( 𝑥𝐴 ) ) ) ) ) )
2 1 simplbi ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ )