| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mccl.kb | ⊢ Ⅎ 𝑘 𝐵 | 
						
							| 2 |  | mccl.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 3 |  | mccl.b | ⊢ ( 𝜑  →  𝐵  ∈  ( ℕ0  ↑m  𝐴 ) ) | 
						
							| 4 |  | sumeq1 | ⊢ ( 𝑎  =  ∅  →  Σ 𝑘  ∈  𝑎 ( 𝑏 ‘ 𝑘 )  =  Σ 𝑘  ∈  ∅ ( 𝑏 ‘ 𝑘 ) ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( 𝑎  =  ∅  →  ( ! ‘ Σ 𝑘  ∈  𝑎 ( 𝑏 ‘ 𝑘 ) )  =  ( ! ‘ Σ 𝑘  ∈  ∅ ( 𝑏 ‘ 𝑘 ) ) ) | 
						
							| 6 |  | prodeq1 | ⊢ ( 𝑎  =  ∅  →  ∏ 𝑘  ∈  𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) )  =  ∏ 𝑘  ∈  ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) | 
						
							| 7 | 5 6 | oveq12d | ⊢ ( 𝑎  =  ∅  →  ( ( ! ‘ Σ 𝑘  ∈  𝑎 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  =  ( ( ! ‘ Σ 𝑘  ∈  ∅ ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ) | 
						
							| 8 | 7 | eleq1d | ⊢ ( 𝑎  =  ∅  →  ( ( ( ! ‘ Σ 𝑘  ∈  𝑎 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ  ↔  ( ( ! ‘ Σ 𝑘  ∈  ∅ ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) ) | 
						
							| 9 | 8 | ralbidv | ⊢ ( 𝑎  =  ∅  →  ( ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑎 ) ( ( ! ‘ Σ 𝑘  ∈  𝑎 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ  ↔  ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑎 ) ( ( ! ‘ Σ 𝑘  ∈  ∅ ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑎  =  ∅  →  ( ℕ0  ↑m  𝑎 )  =  ( ℕ0  ↑m  ∅ ) ) | 
						
							| 11 | 10 | raleqdv | ⊢ ( 𝑎  =  ∅  →  ( ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑎 ) ( ( ! ‘ Σ 𝑘  ∈  ∅ ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ  ↔  ∀ 𝑏  ∈  ( ℕ0  ↑m  ∅ ) ( ( ! ‘ Σ 𝑘  ∈  ∅ ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) ) | 
						
							| 12 | 9 11 | bitrd | ⊢ ( 𝑎  =  ∅  →  ( ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑎 ) ( ( ! ‘ Σ 𝑘  ∈  𝑎 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ  ↔  ∀ 𝑏  ∈  ( ℕ0  ↑m  ∅ ) ( ( ! ‘ Σ 𝑘  ∈  ∅ ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) ) | 
						
							| 13 |  | sumeq1 | ⊢ ( 𝑎  =  𝑐  →  Σ 𝑘  ∈  𝑎 ( 𝑏 ‘ 𝑘 )  =  Σ 𝑘  ∈  𝑐 ( 𝑏 ‘ 𝑘 ) ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( 𝑎  =  𝑐  →  ( ! ‘ Σ 𝑘  ∈  𝑎 ( 𝑏 ‘ 𝑘 ) )  =  ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑏 ‘ 𝑘 ) ) ) | 
						
							| 15 |  | prodeq1 | ⊢ ( 𝑎  =  𝑐  →  ∏ 𝑘  ∈  𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) )  =  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) | 
						
							| 16 | 14 15 | oveq12d | ⊢ ( 𝑎  =  𝑐  →  ( ( ! ‘ Σ 𝑘  ∈  𝑎 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  =  ( ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ) | 
						
							| 17 | 16 | eleq1d | ⊢ ( 𝑎  =  𝑐  →  ( ( ( ! ‘ Σ 𝑘  ∈  𝑎 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ  ↔  ( ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) ) | 
						
							| 18 | 17 | ralbidv | ⊢ ( 𝑎  =  𝑐  →  ( ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑎 ) ( ( ! ‘ Σ 𝑘  ∈  𝑎 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ  ↔  ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑎 ) ( ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) ) | 
						
							| 19 |  | oveq2 | ⊢ ( 𝑎  =  𝑐  →  ( ℕ0  ↑m  𝑎 )  =  ( ℕ0  ↑m  𝑐 ) ) | 
						
							| 20 | 19 | raleqdv | ⊢ ( 𝑎  =  𝑐  →  ( ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑎 ) ( ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ  ↔  ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) ) | 
						
							| 21 | 18 20 | bitrd | ⊢ ( 𝑎  =  𝑐  →  ( ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑎 ) ( ( ! ‘ Σ 𝑘  ∈  𝑎 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ  ↔  ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) ) | 
						
							| 22 |  | sumeq1 | ⊢ ( 𝑎  =  ( 𝑐  ∪  { 𝑑 } )  →  Σ 𝑘  ∈  𝑎 ( 𝑏 ‘ 𝑘 )  =  Σ 𝑘  ∈  ( 𝑐  ∪  { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( 𝑎  =  ( 𝑐  ∪  { 𝑑 } )  →  ( ! ‘ Σ 𝑘  ∈  𝑎 ( 𝑏 ‘ 𝑘 ) )  =  ( ! ‘ Σ 𝑘  ∈  ( 𝑐  ∪  { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) ) | 
						
							| 24 |  | prodeq1 | ⊢ ( 𝑎  =  ( 𝑐  ∪  { 𝑑 } )  →  ∏ 𝑘  ∈  𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) )  =  ∏ 𝑘  ∈  ( 𝑐  ∪  { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) | 
						
							| 25 | 23 24 | oveq12d | ⊢ ( 𝑎  =  ( 𝑐  ∪  { 𝑑 } )  →  ( ( ! ‘ Σ 𝑘  ∈  𝑎 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  =  ( ( ! ‘ Σ 𝑘  ∈  ( 𝑐  ∪  { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  ( 𝑐  ∪  { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ) | 
						
							| 26 | 25 | eleq1d | ⊢ ( 𝑎  =  ( 𝑐  ∪  { 𝑑 } )  →  ( ( ( ! ‘ Σ 𝑘  ∈  𝑎 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ  ↔  ( ( ! ‘ Σ 𝑘  ∈  ( 𝑐  ∪  { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  ( 𝑐  ∪  { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) ) | 
						
							| 27 | 26 | ralbidv | ⊢ ( 𝑎  =  ( 𝑐  ∪  { 𝑑 } )  →  ( ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑎 ) ( ( ! ‘ Σ 𝑘  ∈  𝑎 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ  ↔  ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑎 ) ( ( ! ‘ Σ 𝑘  ∈  ( 𝑐  ∪  { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  ( 𝑐  ∪  { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) ) | 
						
							| 28 |  | oveq2 | ⊢ ( 𝑎  =  ( 𝑐  ∪  { 𝑑 } )  →  ( ℕ0  ↑m  𝑎 )  =  ( ℕ0  ↑m  ( 𝑐  ∪  { 𝑑 } ) ) ) | 
						
							| 29 | 28 | raleqdv | ⊢ ( 𝑎  =  ( 𝑐  ∪  { 𝑑 } )  →  ( ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑎 ) ( ( ! ‘ Σ 𝑘  ∈  ( 𝑐  ∪  { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  ( 𝑐  ∪  { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ  ↔  ∀ 𝑏  ∈  ( ℕ0  ↑m  ( 𝑐  ∪  { 𝑑 } ) ) ( ( ! ‘ Σ 𝑘  ∈  ( 𝑐  ∪  { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  ( 𝑐  ∪  { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) ) | 
						
							| 30 | 27 29 | bitrd | ⊢ ( 𝑎  =  ( 𝑐  ∪  { 𝑑 } )  →  ( ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑎 ) ( ( ! ‘ Σ 𝑘  ∈  𝑎 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ  ↔  ∀ 𝑏  ∈  ( ℕ0  ↑m  ( 𝑐  ∪  { 𝑑 } ) ) ( ( ! ‘ Σ 𝑘  ∈  ( 𝑐  ∪  { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  ( 𝑐  ∪  { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) ) | 
						
							| 31 |  | sumeq1 | ⊢ ( 𝑎  =  𝐴  →  Σ 𝑘  ∈  𝑎 ( 𝑏 ‘ 𝑘 )  =  Σ 𝑘  ∈  𝐴 ( 𝑏 ‘ 𝑘 ) ) | 
						
							| 32 | 31 | fveq2d | ⊢ ( 𝑎  =  𝐴  →  ( ! ‘ Σ 𝑘  ∈  𝑎 ( 𝑏 ‘ 𝑘 ) )  =  ( ! ‘ Σ 𝑘  ∈  𝐴 ( 𝑏 ‘ 𝑘 ) ) ) | 
						
							| 33 |  | prodeq1 | ⊢ ( 𝑎  =  𝐴  →  ∏ 𝑘  ∈  𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) )  =  ∏ 𝑘  ∈  𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) | 
						
							| 34 | 32 33 | oveq12d | ⊢ ( 𝑎  =  𝐴  →  ( ( ! ‘ Σ 𝑘  ∈  𝑎 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  =  ( ( ! ‘ Σ 𝑘  ∈  𝐴 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ) | 
						
							| 35 | 34 | eleq1d | ⊢ ( 𝑎  =  𝐴  →  ( ( ( ! ‘ Σ 𝑘  ∈  𝑎 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ  ↔  ( ( ! ‘ Σ 𝑘  ∈  𝐴 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) ) | 
						
							| 36 | 35 | ralbidv | ⊢ ( 𝑎  =  𝐴  →  ( ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑎 ) ( ( ! ‘ Σ 𝑘  ∈  𝑎 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ  ↔  ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑎 ) ( ( ! ‘ Σ 𝑘  ∈  𝐴 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) ) | 
						
							| 37 |  | oveq2 | ⊢ ( 𝑎  =  𝐴  →  ( ℕ0  ↑m  𝑎 )  =  ( ℕ0  ↑m  𝐴 ) ) | 
						
							| 38 | 37 | raleqdv | ⊢ ( 𝑎  =  𝐴  →  ( ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑎 ) ( ( ! ‘ Σ 𝑘  ∈  𝐴 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ  ↔  ∀ 𝑏  ∈  ( ℕ0  ↑m  𝐴 ) ( ( ! ‘ Σ 𝑘  ∈  𝐴 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) ) | 
						
							| 39 | 36 38 | bitrd | ⊢ ( 𝑎  =  𝐴  →  ( ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑎 ) ( ( ! ‘ Σ 𝑘  ∈  𝑎 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ  ↔  ∀ 𝑏  ∈  ( ℕ0  ↑m  𝐴 ) ( ( ! ‘ Σ 𝑘  ∈  𝐴 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) ) | 
						
							| 40 |  | sum0 | ⊢ Σ 𝑘  ∈  ∅ ( 𝑏 ‘ 𝑘 )  =  0 | 
						
							| 41 | 40 | fveq2i | ⊢ ( ! ‘ Σ 𝑘  ∈  ∅ ( 𝑏 ‘ 𝑘 ) )  =  ( ! ‘ 0 ) | 
						
							| 42 |  | fac0 | ⊢ ( ! ‘ 0 )  =  1 | 
						
							| 43 | 41 42 | eqtri | ⊢ ( ! ‘ Σ 𝑘  ∈  ∅ ( 𝑏 ‘ 𝑘 ) )  =  1 | 
						
							| 44 |  | prod0 | ⊢ ∏ 𝑘  ∈  ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) )  =  1 | 
						
							| 45 | 43 44 | oveq12i | ⊢ ( ( ! ‘ Σ 𝑘  ∈  ∅ ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  =  ( 1  /  1 ) | 
						
							| 46 |  | 1div1e1 | ⊢ ( 1  /  1 )  =  1 | 
						
							| 47 | 45 46 | eqtri | ⊢ ( ( ! ‘ Σ 𝑘  ∈  ∅ ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  =  1 | 
						
							| 48 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 49 | 47 48 | eqeltri | ⊢ ( ( ! ‘ Σ 𝑘  ∈  ∅ ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ | 
						
							| 50 | 49 | a1i | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( ℕ0  ↑m  ∅ ) )  →  ( ( ! ‘ Σ 𝑘  ∈  ∅ ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) | 
						
							| 51 | 50 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑏  ∈  ( ℕ0  ↑m  ∅ ) ( ( ! ‘ Σ 𝑘  ∈  ∅ ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) | 
						
							| 52 |  | nfv | ⊢ Ⅎ 𝑏 ( 𝜑  ∧  ( 𝑐  ⊆  𝐴  ∧  𝑑  ∈  ( 𝐴  ∖  𝑐 ) ) ) | 
						
							| 53 |  | nfra1 | ⊢ Ⅎ 𝑏 ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ | 
						
							| 54 | 52 53 | nfan | ⊢ Ⅎ 𝑏 ( ( 𝜑  ∧  ( 𝑐  ⊆  𝐴  ∧  𝑑  ∈  ( 𝐴  ∖  𝑐 ) ) )  ∧  ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) | 
						
							| 55 |  | simpll | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ⊆  𝐴  ∧  𝑑  ∈  ( 𝐴  ∖  𝑐 ) ) )  ∧  ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ )  ∧  𝑏  ∈  ( ℕ0  ↑m  ( 𝑐  ∪  { 𝑑 } ) ) )  →  ( 𝜑  ∧  ( 𝑐  ⊆  𝐴  ∧  𝑑  ∈  ( 𝐴  ∖  𝑐 ) ) ) ) | 
						
							| 56 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝑏 ‘ 𝑘 )  =  ( 𝑏 ‘ 𝑗 ) ) | 
						
							| 57 | 56 | cbvsumv | ⊢ Σ 𝑘  ∈  𝑐 ( 𝑏 ‘ 𝑘 )  =  Σ 𝑗  ∈  𝑐 ( 𝑏 ‘ 𝑗 ) | 
						
							| 58 | 57 | a1i | ⊢ ( 𝑏  =  𝑒  →  Σ 𝑘  ∈  𝑐 ( 𝑏 ‘ 𝑘 )  =  Σ 𝑗  ∈  𝑐 ( 𝑏 ‘ 𝑗 ) ) | 
						
							| 59 |  | fveq1 | ⊢ ( 𝑏  =  𝑒  →  ( 𝑏 ‘ 𝑗 )  =  ( 𝑒 ‘ 𝑗 ) ) | 
						
							| 60 | 59 | sumeq2sdv | ⊢ ( 𝑏  =  𝑒  →  Σ 𝑗  ∈  𝑐 ( 𝑏 ‘ 𝑗 )  =  Σ 𝑗  ∈  𝑐 ( 𝑒 ‘ 𝑗 ) ) | 
						
							| 61 | 58 60 | eqtrd | ⊢ ( 𝑏  =  𝑒  →  Σ 𝑘  ∈  𝑐 ( 𝑏 ‘ 𝑘 )  =  Σ 𝑗  ∈  𝑐 ( 𝑒 ‘ 𝑗 ) ) | 
						
							| 62 | 61 | fveq2d | ⊢ ( 𝑏  =  𝑒  →  ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑏 ‘ 𝑘 ) )  =  ( ! ‘ Σ 𝑗  ∈  𝑐 ( 𝑒 ‘ 𝑗 ) ) ) | 
						
							| 63 |  | 2fveq3 | ⊢ ( 𝑘  =  𝑗  →  ( ! ‘ ( 𝑏 ‘ 𝑘 ) )  =  ( ! ‘ ( 𝑏 ‘ 𝑗 ) ) ) | 
						
							| 64 | 63 | cbvprodv | ⊢ ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) )  =  ∏ 𝑗  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑗 ) ) | 
						
							| 65 | 64 | a1i | ⊢ ( 𝑏  =  𝑒  →  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) )  =  ∏ 𝑗  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑗 ) ) ) | 
						
							| 66 | 59 | fveq2d | ⊢ ( 𝑏  =  𝑒  →  ( ! ‘ ( 𝑏 ‘ 𝑗 ) )  =  ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) | 
						
							| 67 | 66 | prodeq2ad | ⊢ ( 𝑏  =  𝑒  →  ∏ 𝑗  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑗 ) )  =  ∏ 𝑗  ∈  𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) | 
						
							| 68 | 65 67 | eqtrd | ⊢ ( 𝑏  =  𝑒  →  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) )  =  ∏ 𝑗  ∈  𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) | 
						
							| 69 | 62 68 | oveq12d | ⊢ ( 𝑏  =  𝑒  →  ( ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  =  ( ( ! ‘ Σ 𝑗  ∈  𝑐 ( 𝑒 ‘ 𝑗 ) )  /  ∏ 𝑗  ∈  𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ) | 
						
							| 70 | 69 | eleq1d | ⊢ ( 𝑏  =  𝑒  →  ( ( ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ  ↔  ( ( ! ‘ Σ 𝑗  ∈  𝑐 ( 𝑒 ‘ 𝑗 ) )  /  ∏ 𝑗  ∈  𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) )  ∈  ℕ ) ) | 
						
							| 71 | 70 | cbvralvw | ⊢ ( ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ  ↔  ∀ 𝑒  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑗  ∈  𝑐 ( 𝑒 ‘ 𝑗 ) )  /  ∏ 𝑗  ∈  𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) )  ∈  ℕ ) | 
						
							| 72 | 71 | biimpi | ⊢ ( ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ  →  ∀ 𝑒  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑗  ∈  𝑐 ( 𝑒 ‘ 𝑗 ) )  /  ∏ 𝑗  ∈  𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) )  ∈  ℕ ) | 
						
							| 73 | 72 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ⊆  𝐴  ∧  𝑑  ∈  ( 𝐴  ∖  𝑐 ) ) )  ∧  ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ )  ∧  𝑏  ∈  ( ℕ0  ↑m  ( 𝑐  ∪  { 𝑑 } ) ) )  →  ∀ 𝑒  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑗  ∈  𝑐 ( 𝑒 ‘ 𝑗 ) )  /  ∏ 𝑗  ∈  𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) )  ∈  ℕ ) | 
						
							| 74 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ⊆  𝐴  ∧  𝑑  ∈  ( 𝐴  ∖  𝑐 ) ) )  ∧  ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ )  ∧  𝑏  ∈  ( ℕ0  ↑m  ( 𝑐  ∪  { 𝑑 } ) ) )  →  𝑏  ∈  ( ℕ0  ↑m  ( 𝑐  ∪  { 𝑑 } ) ) ) | 
						
							| 75 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ⊆  𝐴  ∧  𝑑  ∈  ( 𝐴  ∖  𝑐 ) ) )  ∧  ∀ 𝑒  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑗  ∈  𝑐 ( 𝑒 ‘ 𝑗 ) )  /  ∏ 𝑗  ∈  𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) )  ∈  ℕ )  ∧  𝑏  ∈  ( ℕ0  ↑m  ( 𝑐  ∪  { 𝑑 } ) ) )  →  𝐴  ∈  Fin ) | 
						
							| 76 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑐  ⊆  𝐴  ∧  𝑑  ∈  ( 𝐴  ∖  𝑐 ) ) )  →  𝑐  ⊆  𝐴 ) | 
						
							| 77 | 76 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ⊆  𝐴  ∧  𝑑  ∈  ( 𝐴  ∖  𝑐 ) ) )  ∧  ∀ 𝑒  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑗  ∈  𝑐 ( 𝑒 ‘ 𝑗 ) )  /  ∏ 𝑗  ∈  𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) )  ∈  ℕ )  ∧  𝑏  ∈  ( ℕ0  ↑m  ( 𝑐  ∪  { 𝑑 } ) ) )  →  𝑐  ⊆  𝐴 ) | 
						
							| 78 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑐  ⊆  𝐴  ∧  𝑑  ∈  ( 𝐴  ∖  𝑐 ) ) )  →  𝑑  ∈  ( 𝐴  ∖  𝑐 ) ) | 
						
							| 79 | 78 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ⊆  𝐴  ∧  𝑑  ∈  ( 𝐴  ∖  𝑐 ) ) )  ∧  ∀ 𝑒  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑗  ∈  𝑐 ( 𝑒 ‘ 𝑗 ) )  /  ∏ 𝑗  ∈  𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) )  ∈  ℕ )  ∧  𝑏  ∈  ( ℕ0  ↑m  ( 𝑐  ∪  { 𝑑 } ) ) )  →  𝑑  ∈  ( 𝐴  ∖  𝑐 ) ) | 
						
							| 80 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ⊆  𝐴  ∧  𝑑  ∈  ( 𝐴  ∖  𝑐 ) ) )  ∧  ∀ 𝑒  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑗  ∈  𝑐 ( 𝑒 ‘ 𝑗 ) )  /  ∏ 𝑗  ∈  𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) )  ∈  ℕ )  ∧  𝑏  ∈  ( ℕ0  ↑m  ( 𝑐  ∪  { 𝑑 } ) ) )  →  𝑏  ∈  ( ℕ0  ↑m  ( 𝑐  ∪  { 𝑑 } ) ) ) | 
						
							| 81 |  | fveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝑒 ‘ 𝑗 )  =  ( 𝑒 ‘ 𝑘 ) ) | 
						
							| 82 | 81 | cbvsumv | ⊢ Σ 𝑗  ∈  𝑐 ( 𝑒 ‘ 𝑗 )  =  Σ 𝑘  ∈  𝑐 ( 𝑒 ‘ 𝑘 ) | 
						
							| 83 | 82 | fveq2i | ⊢ ( ! ‘ Σ 𝑗  ∈  𝑐 ( 𝑒 ‘ 𝑗 ) )  =  ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑒 ‘ 𝑘 ) ) | 
						
							| 84 |  | 2fveq3 | ⊢ ( 𝑗  =  𝑘  →  ( ! ‘ ( 𝑒 ‘ 𝑗 ) )  =  ( ! ‘ ( 𝑒 ‘ 𝑘 ) ) ) | 
						
							| 85 | 84 | cbvprodv | ⊢ ∏ 𝑗  ∈  𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) )  =  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑒 ‘ 𝑘 ) ) | 
						
							| 86 | 83 85 | oveq12i | ⊢ ( ( ! ‘ Σ 𝑗  ∈  𝑐 ( 𝑒 ‘ 𝑗 ) )  /  ∏ 𝑗  ∈  𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) )  =  ( ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑒 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑒 ‘ 𝑘 ) ) ) | 
						
							| 87 | 86 | eleq1i | ⊢ ( ( ( ! ‘ Σ 𝑗  ∈  𝑐 ( 𝑒 ‘ 𝑗 ) )  /  ∏ 𝑗  ∈  𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) )  ∈  ℕ  ↔  ( ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑒 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑒 ‘ 𝑘 ) ) )  ∈  ℕ ) | 
						
							| 88 | 87 | ralbii | ⊢ ( ∀ 𝑒  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑗  ∈  𝑐 ( 𝑒 ‘ 𝑗 ) )  /  ∏ 𝑗  ∈  𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) )  ∈  ℕ  ↔  ∀ 𝑒  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑒 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑒 ‘ 𝑘 ) ) )  ∈  ℕ ) | 
						
							| 89 | 88 | biimpi | ⊢ ( ∀ 𝑒  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑗  ∈  𝑐 ( 𝑒 ‘ 𝑗 ) )  /  ∏ 𝑗  ∈  𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) )  ∈  ℕ  →  ∀ 𝑒  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑒 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑒 ‘ 𝑘 ) ) )  ∈  ℕ ) | 
						
							| 90 | 89 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ⊆  𝐴  ∧  𝑑  ∈  ( 𝐴  ∖  𝑐 ) ) )  ∧  ∀ 𝑒  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑗  ∈  𝑐 ( 𝑒 ‘ 𝑗 ) )  /  ∏ 𝑗  ∈  𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) )  ∈  ℕ )  ∧  𝑏  ∈  ( ℕ0  ↑m  ( 𝑐  ∪  { 𝑑 } ) ) )  →  ∀ 𝑒  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑒 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑒 ‘ 𝑘 ) ) )  ∈  ℕ ) | 
						
							| 91 | 75 77 79 80 90 | mccllem | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ⊆  𝐴  ∧  𝑑  ∈  ( 𝐴  ∖  𝑐 ) ) )  ∧  ∀ 𝑒  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑗  ∈  𝑐 ( 𝑒 ‘ 𝑗 ) )  /  ∏ 𝑗  ∈  𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) )  ∈  ℕ )  ∧  𝑏  ∈  ( ℕ0  ↑m  ( 𝑐  ∪  { 𝑑 } ) ) )  →  ( ( ! ‘ Σ 𝑘  ∈  ( 𝑐  ∪  { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  ( 𝑐  ∪  { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) | 
						
							| 92 | 55 73 74 91 | syl21anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ⊆  𝐴  ∧  𝑑  ∈  ( 𝐴  ∖  𝑐 ) ) )  ∧  ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ )  ∧  𝑏  ∈  ( ℕ0  ↑m  ( 𝑐  ∪  { 𝑑 } ) ) )  →  ( ( ! ‘ Σ 𝑘  ∈  ( 𝑐  ∪  { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  ( 𝑐  ∪  { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) | 
						
							| 93 | 92 | ex | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ⊆  𝐴  ∧  𝑑  ∈  ( 𝐴  ∖  𝑐 ) ) )  ∧  ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ )  →  ( 𝑏  ∈  ( ℕ0  ↑m  ( 𝑐  ∪  { 𝑑 } ) )  →  ( ( ! ‘ Σ 𝑘  ∈  ( 𝑐  ∪  { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  ( 𝑐  ∪  { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) ) | 
						
							| 94 | 54 93 | ralrimi | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ⊆  𝐴  ∧  𝑑  ∈  ( 𝐴  ∖  𝑐 ) ) )  ∧  ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ )  →  ∀ 𝑏  ∈  ( ℕ0  ↑m  ( 𝑐  ∪  { 𝑑 } ) ) ( ( ! ‘ Σ 𝑘  ∈  ( 𝑐  ∪  { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  ( 𝑐  ∪  { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) | 
						
							| 95 | 94 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑐  ⊆  𝐴  ∧  𝑑  ∈  ( 𝐴  ∖  𝑐 ) ) )  →  ( ∀ 𝑏  ∈  ( ℕ0  ↑m  𝑐 ) ( ( ! ‘ Σ 𝑘  ∈  𝑐 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ  →  ∀ 𝑏  ∈  ( ℕ0  ↑m  ( 𝑐  ∪  { 𝑑 } ) ) ( ( ! ‘ Σ 𝑘  ∈  ( 𝑐  ∪  { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  ( 𝑐  ∪  { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) ) | 
						
							| 96 | 12 21 30 39 51 95 2 | findcard2d | ⊢ ( 𝜑  →  ∀ 𝑏  ∈  ( ℕ0  ↑m  𝐴 ) ( ( ! ‘ Σ 𝑘  ∈  𝐴 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) | 
						
							| 97 |  | nfcv | ⊢ Ⅎ 𝑘 𝑏 | 
						
							| 98 | 97 1 | nfeq | ⊢ Ⅎ 𝑘 𝑏  =  𝐵 | 
						
							| 99 |  | fveq1 | ⊢ ( 𝑏  =  𝐵  →  ( 𝑏 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 100 | 99 | a1d | ⊢ ( 𝑏  =  𝐵  →  ( 𝑘  ∈  𝐴  →  ( 𝑏 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 101 | 98 100 | ralrimi | ⊢ ( 𝑏  =  𝐵  →  ∀ 𝑘  ∈  𝐴 ( 𝑏 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 102 | 101 | sumeq2d | ⊢ ( 𝑏  =  𝐵  →  Σ 𝑘  ∈  𝐴 ( 𝑏 ‘ 𝑘 )  =  Σ 𝑘  ∈  𝐴 ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 103 | 102 | fveq2d | ⊢ ( 𝑏  =  𝐵  →  ( ! ‘ Σ 𝑘  ∈  𝐴 ( 𝑏 ‘ 𝑘 ) )  =  ( ! ‘ Σ 𝑘  ∈  𝐴 ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 104 | 99 | fveq2d | ⊢ ( 𝑏  =  𝐵  →  ( ! ‘ ( 𝑏 ‘ 𝑘 ) )  =  ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 105 | 104 | a1d | ⊢ ( 𝑏  =  𝐵  →  ( 𝑘  ∈  𝐴  →  ( ! ‘ ( 𝑏 ‘ 𝑘 ) )  =  ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 106 | 98 105 | ralrimi | ⊢ ( 𝑏  =  𝐵  →  ∀ 𝑘  ∈  𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) )  =  ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 107 | 106 | prodeq2d | ⊢ ( 𝑏  =  𝐵  →  ∏ 𝑘  ∈  𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) )  =  ∏ 𝑘  ∈  𝐴 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 108 | 103 107 | oveq12d | ⊢ ( 𝑏  =  𝐵  →  ( ( ! ‘ Σ 𝑘  ∈  𝐴 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  =  ( ( ! ‘ Σ 𝑘  ∈  𝐴 ( 𝐵 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐴 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 109 | 108 | eleq1d | ⊢ ( 𝑏  =  𝐵  →  ( ( ( ! ‘ Σ 𝑘  ∈  𝐴 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ  ↔  ( ( ! ‘ Σ 𝑘  ∈  𝐴 ( 𝐵 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐴 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℕ ) ) | 
						
							| 110 | 109 | rspccva | ⊢ ( ( ∀ 𝑏  ∈  ( ℕ0  ↑m  𝐴 ) ( ( ! ‘ Σ 𝑘  ∈  𝐴 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ  ∧  𝐵  ∈  ( ℕ0  ↑m  𝐴 ) )  →  ( ( ! ‘ Σ 𝑘  ∈  𝐴 ( 𝐵 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐴 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℕ ) | 
						
							| 111 | 96 3 110 | syl2anc | ⊢ ( 𝜑  →  ( ( ! ‘ Σ 𝑘  ∈  𝐴 ( 𝐵 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐴 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℕ ) |