Step |
Hyp |
Ref |
Expression |
1 |
|
mccl.kb |
⊢ Ⅎ 𝑘 𝐵 |
2 |
|
mccl.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
3 |
|
mccl.b |
⊢ ( 𝜑 → 𝐵 ∈ ( ℕ0 ↑m 𝐴 ) ) |
4 |
|
sumeq1 |
⊢ ( 𝑎 = ∅ → Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) = Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) |
5 |
4
|
fveq2d |
⊢ ( 𝑎 = ∅ → ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) ) |
6 |
|
prodeq1 |
⊢ ( 𝑎 = ∅ → ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) |
7 |
5 6
|
oveq12d |
⊢ ( 𝑎 = ∅ → ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑎 = ∅ → ( ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ( ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
9 |
8
|
ralbidv |
⊢ ( 𝑎 = ∅ → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
10 |
|
oveq2 |
⊢ ( 𝑎 = ∅ → ( ℕ0 ↑m 𝑎 ) = ( ℕ0 ↑m ∅ ) ) |
11 |
10
|
raleqdv |
⊢ ( 𝑎 = ∅ → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑏 ∈ ( ℕ0 ↑m ∅ ) ( ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
12 |
9 11
|
bitrd |
⊢ ( 𝑎 = ∅ → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑏 ∈ ( ℕ0 ↑m ∅ ) ( ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
13 |
|
sumeq1 |
⊢ ( 𝑎 = 𝑐 → Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) = Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝑎 = 𝑐 → ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) ) |
15 |
|
prodeq1 |
⊢ ( 𝑎 = 𝑐 → ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) |
16 |
14 15
|
oveq12d |
⊢ ( 𝑎 = 𝑐 → ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ) |
17 |
16
|
eleq1d |
⊢ ( 𝑎 = 𝑐 → ( ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
18 |
17
|
ralbidv |
⊢ ( 𝑎 = 𝑐 → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
19 |
|
oveq2 |
⊢ ( 𝑎 = 𝑐 → ( ℕ0 ↑m 𝑎 ) = ( ℕ0 ↑m 𝑐 ) ) |
20 |
19
|
raleqdv |
⊢ ( 𝑎 = 𝑐 → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
21 |
18 20
|
bitrd |
⊢ ( 𝑎 = 𝑐 → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
22 |
|
sumeq1 |
⊢ ( 𝑎 = ( 𝑐 ∪ { 𝑑 } ) → Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) |
23 |
22
|
fveq2d |
⊢ ( 𝑎 = ( 𝑐 ∪ { 𝑑 } ) → ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) ) |
24 |
|
prodeq1 |
⊢ ( 𝑎 = ( 𝑐 ∪ { 𝑑 } ) → ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ∏ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) |
25 |
23 24
|
oveq12d |
⊢ ( 𝑎 = ( 𝑐 ∪ { 𝑑 } ) → ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ) |
26 |
25
|
eleq1d |
⊢ ( 𝑎 = ( 𝑐 ∪ { 𝑑 } ) → ( ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ( ( ! ‘ Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
27 |
26
|
ralbidv |
⊢ ( 𝑎 = ( 𝑐 ∪ { 𝑑 } ) → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
28 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑐 ∪ { 𝑑 } ) → ( ℕ0 ↑m 𝑎 ) = ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) |
29 |
28
|
raleqdv |
⊢ ( 𝑎 = ( 𝑐 ∪ { 𝑑 } ) → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ( ( ! ‘ Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
30 |
27 29
|
bitrd |
⊢ ( 𝑎 = ( 𝑐 ∪ { 𝑑 } ) → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ( ( ! ‘ Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
31 |
|
sumeq1 |
⊢ ( 𝑎 = 𝐴 → Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) = Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) |
32 |
31
|
fveq2d |
⊢ ( 𝑎 = 𝐴 → ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) ) |
33 |
|
prodeq1 |
⊢ ( 𝑎 = 𝐴 → ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) |
34 |
32 33
|
oveq12d |
⊢ ( 𝑎 = 𝐴 → ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ) |
35 |
34
|
eleq1d |
⊢ ( 𝑎 = 𝐴 → ( ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
36 |
35
|
ralbidv |
⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
37 |
|
oveq2 |
⊢ ( 𝑎 = 𝐴 → ( ℕ0 ↑m 𝑎 ) = ( ℕ0 ↑m 𝐴 ) ) |
38 |
37
|
raleqdv |
⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝐴 ) ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
39 |
36 38
|
bitrd |
⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝐴 ) ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
40 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) = 0 |
41 |
40
|
fveq2i |
⊢ ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ 0 ) |
42 |
|
fac0 |
⊢ ( ! ‘ 0 ) = 1 |
43 |
41 42
|
eqtri |
⊢ ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) = 1 |
44 |
|
prod0 |
⊢ ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = 1 |
45 |
43 44
|
oveq12i |
⊢ ( ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) = ( 1 / 1 ) |
46 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
47 |
45 46
|
eqtri |
⊢ ( ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) = 1 |
48 |
|
1nn |
⊢ 1 ∈ ℕ |
49 |
47 48
|
eqeltri |
⊢ ( ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ |
50 |
49
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( ℕ0 ↑m ∅ ) ) → ( ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) |
51 |
50
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ( ℕ0 ↑m ∅ ) ( ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) |
52 |
|
nfv |
⊢ Ⅎ 𝑏 ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) |
53 |
|
nfra1 |
⊢ Ⅎ 𝑏 ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ |
54 |
52 53
|
nfan |
⊢ Ⅎ 𝑏 ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) |
55 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ∧ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) → ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ) |
56 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝑏 ‘ 𝑘 ) = ( 𝑏 ‘ 𝑗 ) ) |
57 |
56
|
cbvsumv |
⊢ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) = Σ 𝑗 ∈ 𝑐 ( 𝑏 ‘ 𝑗 ) |
58 |
57
|
a1i |
⊢ ( 𝑏 = 𝑒 → Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) = Σ 𝑗 ∈ 𝑐 ( 𝑏 ‘ 𝑗 ) ) |
59 |
|
fveq1 |
⊢ ( 𝑏 = 𝑒 → ( 𝑏 ‘ 𝑗 ) = ( 𝑒 ‘ 𝑗 ) ) |
60 |
59
|
sumeq2sdv |
⊢ ( 𝑏 = 𝑒 → Σ 𝑗 ∈ 𝑐 ( 𝑏 ‘ 𝑗 ) = Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) |
61 |
58 60
|
eqtrd |
⊢ ( 𝑏 = 𝑒 → Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) = Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) |
62 |
61
|
fveq2d |
⊢ ( 𝑏 = 𝑒 → ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) ) |
63 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑗 → ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ ( 𝑏 ‘ 𝑗 ) ) ) |
64 |
63
|
cbvprodv |
⊢ ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑗 ) ) |
65 |
64
|
a1i |
⊢ ( 𝑏 = 𝑒 → ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑗 ) ) ) |
66 |
59
|
fveq2d |
⊢ ( 𝑏 = 𝑒 → ( ! ‘ ( 𝑏 ‘ 𝑗 ) ) = ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) |
67 |
66
|
prodeq2ad |
⊢ ( 𝑏 = 𝑒 → ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑗 ) ) = ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) |
68 |
65 67
|
eqtrd |
⊢ ( 𝑏 = 𝑒 → ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) |
69 |
62 68
|
oveq12d |
⊢ ( 𝑏 = 𝑒 → ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) = ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ) |
70 |
69
|
eleq1d |
⊢ ( 𝑏 = 𝑒 → ( ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ ) ) |
71 |
70
|
cbvralvw |
⊢ ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ ) |
72 |
71
|
biimpi |
⊢ ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ → ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ ) |
73 |
72
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ∧ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) → ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ ) |
74 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ∧ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) → 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) |
75 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ ) ∧ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) → 𝐴 ∈ Fin ) |
76 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) → 𝑐 ⊆ 𝐴 ) |
77 |
76
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ ) ∧ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) → 𝑐 ⊆ 𝐴 ) |
78 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) → 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) |
79 |
78
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ ) ∧ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) → 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) |
80 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ ) ∧ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) → 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) |
81 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑒 ‘ 𝑗 ) = ( 𝑒 ‘ 𝑘 ) ) |
82 |
81
|
cbvsumv |
⊢ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) = Σ 𝑘 ∈ 𝑐 ( 𝑒 ‘ 𝑘 ) |
83 |
82
|
fveq2i |
⊢ ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) = ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑒 ‘ 𝑘 ) ) |
84 |
|
2fveq3 |
⊢ ( 𝑗 = 𝑘 → ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) = ( ! ‘ ( 𝑒 ‘ 𝑘 ) ) ) |
85 |
84
|
cbvprodv |
⊢ ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) = ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑘 ) ) |
86 |
83 85
|
oveq12i |
⊢ ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑒 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑘 ) ) ) |
87 |
86
|
eleq1i |
⊢ ( ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ ↔ ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑒 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑘 ) ) ) ∈ ℕ ) |
88 |
87
|
ralbii |
⊢ ( ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ ↔ ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑒 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑘 ) ) ) ∈ ℕ ) |
89 |
88
|
biimpi |
⊢ ( ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ → ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑒 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑘 ) ) ) ∈ ℕ ) |
90 |
89
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ ) ∧ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) → ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑒 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑘 ) ) ) ∈ ℕ ) |
91 |
75 77 79 80 90
|
mccllem |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ ) ∧ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) → ( ( ! ‘ Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) |
92 |
55 73 74 91
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ∧ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) → ( ( ! ‘ Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) |
93 |
92
|
ex |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) → ( 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) → ( ( ! ‘ Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
94 |
54 93
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) → ∀ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ( ( ! ‘ Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) |
95 |
94
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ → ∀ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ( ( ! ‘ Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
96 |
12 21 30 39 51 95 2
|
findcard2d |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ( ℕ0 ↑m 𝐴 ) ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) |
97 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑏 |
98 |
97 1
|
nfeq |
⊢ Ⅎ 𝑘 𝑏 = 𝐵 |
99 |
|
fveq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑘 ) ) |
100 |
99
|
a1d |
⊢ ( 𝑏 = 𝐵 → ( 𝑘 ∈ 𝐴 → ( 𝑏 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑘 ) ) ) |
101 |
98 100
|
ralrimi |
⊢ ( 𝑏 = 𝐵 → ∀ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑘 ) ) |
102 |
101
|
sumeq2d |
⊢ ( 𝑏 = 𝐵 → Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) = Σ 𝑘 ∈ 𝐴 ( 𝐵 ‘ 𝑘 ) ) |
103 |
102
|
fveq2d |
⊢ ( 𝑏 = 𝐵 → ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝐵 ‘ 𝑘 ) ) ) |
104 |
99
|
fveq2d |
⊢ ( 𝑏 = 𝐵 → ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) |
105 |
104
|
a1d |
⊢ ( 𝑏 = 𝐵 → ( 𝑘 ∈ 𝐴 → ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) |
106 |
98 105
|
ralrimi |
⊢ ( 𝑏 = 𝐵 → ∀ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) |
107 |
106
|
prodeq2d |
⊢ ( 𝑏 = 𝐵 → ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) |
108 |
103 107
|
oveq12d |
⊢ ( 𝑏 = 𝐵 → ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) |
109 |
108
|
eleq1d |
⊢ ( 𝑏 = 𝐵 → ( ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
110 |
109
|
rspccva |
⊢ ( ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝐴 ) ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ∧ 𝐵 ∈ ( ℕ0 ↑m 𝐴 ) ) → ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℕ ) |
111 |
96 3 110
|
syl2anc |
⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℕ ) |