| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mccllem.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | mccllem.c | ⊢ ( 𝜑  →  𝐶  ⊆  𝐴 ) | 
						
							| 3 |  | mccllem.d | ⊢ ( 𝜑  →  𝐷  ∈  ( 𝐴  ∖  𝐶 ) ) | 
						
							| 4 |  | mccllem.b | ⊢ ( 𝜑  →  𝐵  ∈  ( ℕ0  ↑m  ( 𝐶  ∪  { 𝐷 } ) ) ) | 
						
							| 5 |  | mccllem.6 | ⊢ ( 𝜑  →  ∀ 𝑏  ∈  ( ℕ0  ↑m  𝐶 ) ( ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ ) | 
						
							| 6 |  | nfv | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 7 |  | nfcv | ⊢ Ⅎ 𝑘 ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) | 
						
							| 8 |  | ssfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐶  ⊆  𝐴 )  →  𝐶  ∈  Fin ) | 
						
							| 9 | 1 2 8 | syl2anc | ⊢ ( 𝜑  →  𝐶  ∈  Fin ) | 
						
							| 10 |  | eldifn | ⊢ ( 𝐷  ∈  ( 𝐴  ∖  𝐶 )  →  ¬  𝐷  ∈  𝐶 ) | 
						
							| 11 | 3 10 | syl | ⊢ ( 𝜑  →  ¬  𝐷  ∈  𝐶 ) | 
						
							| 12 |  | elmapi | ⊢ ( 𝐵  ∈  ( ℕ0  ↑m  ( 𝐶  ∪  { 𝐷 } ) )  →  𝐵 : ( 𝐶  ∪  { 𝐷 } ) ⟶ ℕ0 ) | 
						
							| 13 | 4 12 | syl | ⊢ ( 𝜑  →  𝐵 : ( 𝐶  ∪  { 𝐷 } ) ⟶ ℕ0 ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  →  𝐵 : ( 𝐶  ∪  { 𝐷 } ) ⟶ ℕ0 ) | 
						
							| 15 |  | elun1 | ⊢ ( 𝑘  ∈  𝐶  →  𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  →  𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ) | 
						
							| 17 | 14 16 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 18 | 17 | faccld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  →  ( ! ‘ ( 𝐵 ‘ 𝑘 ) )  ∈  ℕ ) | 
						
							| 19 | 18 | nncnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  →  ( ! ‘ ( 𝐵 ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 20 |  | 2fveq3 | ⊢ ( 𝑘  =  𝐷  →  ( ! ‘ ( 𝐵 ‘ 𝑘 ) )  =  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) | 
						
							| 21 |  | snidg | ⊢ ( 𝐷  ∈  ( 𝐴  ∖  𝐶 )  →  𝐷  ∈  { 𝐷 } ) | 
						
							| 22 | 3 21 | syl | ⊢ ( 𝜑  →  𝐷  ∈  { 𝐷 } ) | 
						
							| 23 |  | elun2 | ⊢ ( 𝐷  ∈  { 𝐷 }  →  𝐷  ∈  ( 𝐶  ∪  { 𝐷 } ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ( 𝐶  ∪  { 𝐷 } ) ) | 
						
							| 25 | 13 24 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝐷 )  ∈  ℕ0 ) | 
						
							| 26 | 25 | faccld | ⊢ ( 𝜑  →  ( ! ‘ ( 𝐵 ‘ 𝐷 ) )  ∈  ℕ ) | 
						
							| 27 | 26 | nncnd | ⊢ ( 𝜑  →  ( ! ‘ ( 𝐵 ‘ 𝐷 ) )  ∈  ℂ ) | 
						
							| 28 | 6 7 9 3 11 19 20 27 | fprodsplitsn | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( ! ‘ ( 𝐵 ‘ 𝑘 ) )  =  ( ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) )  ·  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) | 
						
							| 29 | 28 | oveq2d | ⊢ ( 𝜑  →  ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) )  =  ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) )  ·  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) ) | 
						
							| 30 | 3 | eldifad | ⊢ ( 𝜑  →  𝐷  ∈  𝐴 ) | 
						
							| 31 |  | snssi | ⊢ ( 𝐷  ∈  𝐴  →  { 𝐷 }  ⊆  𝐴 ) | 
						
							| 32 | 30 31 | syl | ⊢ ( 𝜑  →  { 𝐷 }  ⊆  𝐴 ) | 
						
							| 33 | 2 32 | unssd | ⊢ ( 𝜑  →  ( 𝐶  ∪  { 𝐷 } )  ⊆  𝐴 ) | 
						
							| 34 |  | ssfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝐶  ∪  { 𝐷 } )  ⊆  𝐴 )  →  ( 𝐶  ∪  { 𝐷 } )  ∈  Fin ) | 
						
							| 35 | 1 33 34 | syl2anc | ⊢ ( 𝜑  →  ( 𝐶  ∪  { 𝐷 } )  ∈  Fin ) | 
						
							| 36 | 13 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 37 | 35 36 | fsumnn0cl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 38 | 37 | faccld | ⊢ ( 𝜑  →  ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  ∈  ℕ ) | 
						
							| 39 | 38 | nncnd | ⊢ ( 𝜑  →  ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 40 | 6 9 19 | fprodclf | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 41 | 40 27 | mulcld | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) )  ·  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) )  ∈  ℂ ) | 
						
							| 42 | 18 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  →  ( ! ‘ ( 𝐵 ‘ 𝑘 ) )  ≠  0 ) | 
						
							| 43 | 9 19 42 | fprodn0 | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) )  ≠  0 ) | 
						
							| 44 | 26 | nnne0d | ⊢ ( 𝜑  →  ( ! ‘ ( 𝐵 ‘ 𝐷 ) )  ≠  0 ) | 
						
							| 45 | 40 27 43 44 | mulne0d | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) )  ·  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) )  ≠  0 ) | 
						
							| 46 | 39 41 45 | divcld | ⊢ ( 𝜑  →  ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) )  ·  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) )  ∈  ℂ ) | 
						
							| 47 | 46 | mullidd | ⊢ ( 𝜑  →  ( 1  ·  ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) )  ·  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) )  =  ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) )  ·  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) ) | 
						
							| 48 | 47 | eqcomd | ⊢ ( 𝜑  →  ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) )  ·  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) )  =  ( 1  ·  ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) )  ·  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) ) ) | 
						
							| 49 | 9 17 | fsumnn0cl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 50 | 49 | faccld | ⊢ ( 𝜑  →  ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) )  ∈  ℕ ) | 
						
							| 51 | 50 | nncnd | ⊢ ( 𝜑  →  ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 52 |  | nnne0 | ⊢ ( ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) )  ∈  ℕ  →  ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) )  ≠  0 ) | 
						
							| 53 | 50 52 | syl | ⊢ ( 𝜑  →  ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) )  ≠  0 ) | 
						
							| 54 | 51 53 | dividd | ⊢ ( 𝜑  →  ( ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) )  /  ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) )  =  1 ) | 
						
							| 55 | 54 | eqcomd | ⊢ ( 𝜑  →  1  =  ( ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) )  /  ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 56 | 40 27 | mulcomd | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) )  ·  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) )  =  ( ( ! ‘ ( 𝐵 ‘ 𝐷 ) )  ·  ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 57 | 56 | oveq2d | ⊢ ( 𝜑  →  ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) )  ·  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) )  =  ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ( ! ‘ ( 𝐵 ‘ 𝐷 ) )  ·  ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) | 
						
							| 58 | 39 27 40 44 43 | divdiv1d | ⊢ ( 𝜑  →  ( ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) )  /  ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) )  =  ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ( ! ‘ ( 𝐵 ‘ 𝐷 ) )  ·  ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) | 
						
							| 59 | 58 | eqcomd | ⊢ ( 𝜑  →  ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ( ! ‘ ( 𝐵 ‘ 𝐷 ) )  ·  ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) )  =  ( ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) )  /  ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 60 | 57 59 | eqtrd | ⊢ ( 𝜑  →  ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) )  ·  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) )  =  ( ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) )  /  ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 61 | 55 60 | oveq12d | ⊢ ( 𝜑  →  ( 1  ·  ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) )  ·  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) )  =  ( ( ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) )  /  ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) )  ·  ( ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) )  /  ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) | 
						
							| 62 | 39 27 44 | divcld | ⊢ ( 𝜑  →  ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) )  ∈  ℂ ) | 
						
							| 63 | 51 51 62 40 53 43 | divmul13d | ⊢ ( 𝜑  →  ( ( ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) )  /  ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) )  ·  ( ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) )  /  ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) )  =  ( ( ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) )  /  ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) )  ·  ( ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) | 
						
							| 64 | 61 63 | eqtrd | ⊢ ( 𝜑  →  ( 1  ·  ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) )  ·  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) )  =  ( ( ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) )  /  ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) )  ·  ( ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) | 
						
							| 65 | 29 48 64 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) )  =  ( ( ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) )  /  ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) )  ·  ( ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) | 
						
							| 66 | 39 27 51 44 53 | divdiv1d | ⊢ ( 𝜑  →  ( ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) )  /  ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) )  =  ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ( ! ‘ ( 𝐵 ‘ 𝐷 ) )  ·  ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ) ) | 
						
							| 67 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝐷  /  𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) | 
						
							| 68 | 17 | nn0cnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 69 |  | csbeq1a | ⊢ ( 𝑘  =  𝐷  →  ( 𝐵 ‘ 𝑘 )  =  ⦋ 𝐷  /  𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 70 |  | csbfv | ⊢ ⦋ 𝐷  /  𝑘 ⦌ ( 𝐵 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝐷 ) | 
						
							| 71 | 70 | a1i | ⊢ ( 𝜑  →  ⦋ 𝐷  /  𝑘 ⦌ ( 𝐵 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝐷 ) ) | 
						
							| 72 | 25 | nn0cnd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝐷 )  ∈  ℂ ) | 
						
							| 73 | 71 72 | eqeltrd | ⊢ ( 𝜑  →  ⦋ 𝐷  /  𝑘 ⦌ ( 𝐵 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 74 | 6 67 9 30 11 68 69 73 | fsumsplitsn | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 )  =  ( Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 )  +  ⦋ 𝐷  /  𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 75 | 74 | oveq1d | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 )  −  Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) )  =  ( ( Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 )  +  ⦋ 𝐷  /  𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) )  −  Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 76 | 49 | nn0cnd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 77 | 76 73 | pncan2d | ⊢ ( 𝜑  →  ( ( Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 )  +  ⦋ 𝐷  /  𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) )  −  Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) )  =  ⦋ 𝐷  /  𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 78 | 75 77 71 | 3eqtrrd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝐷 )  =  ( Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 )  −  Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 79 | 78 | fveq2d | ⊢ ( 𝜑  →  ( ! ‘ ( 𝐵 ‘ 𝐷 ) )  =  ( ! ‘ ( Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 )  −  Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 80 | 79 | oveq1d | ⊢ ( 𝜑  →  ( ( ! ‘ ( 𝐵 ‘ 𝐷 ) )  ·  ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) )  =  ( ( ! ‘ ( Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 )  −  Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) )  ·  ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 81 | 80 | oveq2d | ⊢ ( 𝜑  →  ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ( ! ‘ ( 𝐵 ‘ 𝐷 ) )  ·  ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) ) )  =  ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ( ! ‘ ( Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 )  −  Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) )  ·  ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ) ) | 
						
							| 82 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 83 | 37 | nn0zd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 )  ∈  ℤ ) | 
						
							| 84 | 49 | nn0zd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 )  ∈  ℤ ) | 
						
							| 85 | 49 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 86 | 25 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  ( 𝐵 ‘ 𝐷 ) ) | 
						
							| 87 | 71 | eqcomd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝐷 )  =  ⦋ 𝐷  /  𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 88 | 86 87 | breqtrd | ⊢ ( 𝜑  →  0  ≤  ⦋ 𝐷  /  𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 89 | 49 | nn0red | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 90 | 25 | nn0red | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝐷 )  ∈  ℝ ) | 
						
							| 91 | 71 90 | eqeltrd | ⊢ ( 𝜑  →  ⦋ 𝐷  /  𝑘 ⦌ ( 𝐵 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 92 | 89 91 | addge01d | ⊢ ( 𝜑  →  ( 0  ≤  ⦋ 𝐷  /  𝑘 ⦌ ( 𝐵 ‘ 𝑘 )  ↔  Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 )  ≤  ( Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 )  +  ⦋ 𝐷  /  𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 93 | 88 92 | mpbid | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 )  ≤  ( Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 )  +  ⦋ 𝐷  /  𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 94 | 74 | eqcomd | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 )  +  ⦋ 𝐷  /  𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) )  =  Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 95 | 93 94 | breqtrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 )  ≤  Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 96 | 82 83 84 85 95 | elfzd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 )  ∈  ( 0 ... Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 97 |  | bcval2 | ⊢ ( Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 )  ∈  ( 0 ... Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  →  ( Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) C Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) )  =  ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ( ! ‘ ( Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 )  −  Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) )  ·  ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ) ) | 
						
							| 98 | 96 97 | syl | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) C Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) )  =  ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ( ! ‘ ( Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 )  −  Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) )  ·  ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ) ) | 
						
							| 99 | 98 | eqcomd | ⊢ ( 𝜑  →  ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ( ! ‘ ( Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 )  −  Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) )  ·  ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) ) )  =  ( Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) C Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 100 | 66 81 99 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) )  /  ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) )  =  ( Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) C Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 101 |  | bccl2 | ⊢ ( Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 )  ∈  ( 0 ... Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  →  ( Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) C Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) )  ∈  ℕ ) | 
						
							| 102 | 96 101 | syl | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) C Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) )  ∈  ℕ ) | 
						
							| 103 | 100 102 | eqeltrd | ⊢ ( 𝜑  →  ( ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) )  /  ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℕ ) | 
						
							| 104 |  | ssun1 | ⊢ 𝐶  ⊆  ( 𝐶  ∪  { 𝐷 } ) | 
						
							| 105 | 104 | a1i | ⊢ ( 𝜑  →  𝐶  ⊆  ( 𝐶  ∪  { 𝐷 } ) ) | 
						
							| 106 |  | elmapssres | ⊢ ( ( 𝐵  ∈  ( ℕ0  ↑m  ( 𝐶  ∪  { 𝐷 } ) )  ∧  𝐶  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  →  ( 𝐵  ↾  𝐶 )  ∈  ( ℕ0  ↑m  𝐶 ) ) | 
						
							| 107 | 4 105 106 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵  ↾  𝐶 )  ∈  ( ℕ0  ↑m  𝐶 ) ) | 
						
							| 108 |  | fveq1 | ⊢ ( 𝑏  =  ( 𝐵  ↾  𝐶 )  →  ( 𝑏 ‘ 𝑘 )  =  ( ( 𝐵  ↾  𝐶 ) ‘ 𝑘 ) ) | 
						
							| 109 | 108 | adantr | ⊢ ( ( 𝑏  =  ( 𝐵  ↾  𝐶 )  ∧  𝑘  ∈  𝐶 )  →  ( 𝑏 ‘ 𝑘 )  =  ( ( 𝐵  ↾  𝐶 ) ‘ 𝑘 ) ) | 
						
							| 110 |  | fvres | ⊢ ( 𝑘  ∈  𝐶  →  ( ( 𝐵  ↾  𝐶 ) ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 111 | 110 | adantl | ⊢ ( ( 𝑏  =  ( 𝐵  ↾  𝐶 )  ∧  𝑘  ∈  𝐶 )  →  ( ( 𝐵  ↾  𝐶 ) ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 112 | 109 111 | eqtrd | ⊢ ( ( 𝑏  =  ( 𝐵  ↾  𝐶 )  ∧  𝑘  ∈  𝐶 )  →  ( 𝑏 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 113 | 112 | sumeq2dv | ⊢ ( 𝑏  =  ( 𝐵  ↾  𝐶 )  →  Σ 𝑘  ∈  𝐶 ( 𝑏 ‘ 𝑘 )  =  Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 114 | 113 | fveq2d | ⊢ ( 𝑏  =  ( 𝐵  ↾  𝐶 )  →  ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝑏 ‘ 𝑘 ) )  =  ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 115 | 112 | fveq2d | ⊢ ( ( 𝑏  =  ( 𝐵  ↾  𝐶 )  ∧  𝑘  ∈  𝐶 )  →  ( ! ‘ ( 𝑏 ‘ 𝑘 ) )  =  ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 116 | 115 | prodeq2dv | ⊢ ( 𝑏  =  ( 𝐵  ↾  𝐶 )  →  ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝑏 ‘ 𝑘 ) )  =  ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 117 | 114 116 | oveq12d | ⊢ ( 𝑏  =  ( 𝐵  ↾  𝐶 )  →  ( ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  =  ( ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 118 | 117 | eleq1d | ⊢ ( 𝑏  =  ( 𝐵  ↾  𝐶 )  →  ( ( ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ  ↔  ( ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℕ ) ) | 
						
							| 119 | 118 | rspccva | ⊢ ( ( ∀ 𝑏  ∈  ( ℕ0  ↑m  𝐶 ) ( ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝑏 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) )  ∈  ℕ  ∧  ( 𝐵  ↾  𝐶 )  ∈  ( ℕ0  ↑m  𝐶 ) )  →  ( ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℕ ) | 
						
							| 120 | 5 107 119 | syl2anc | ⊢ ( 𝜑  →  ( ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℕ ) | 
						
							| 121 | 103 120 | nnmulcld | ⊢ ( 𝜑  →  ( ( ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) )  /  ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) ) )  ·  ( ( ! ‘ Σ 𝑘  ∈  𝐶 ( 𝐵 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) )  ∈  ℕ ) | 
						
							| 122 | 65 121 | eqeltrd | ⊢ ( 𝜑  →  ( ( ! ‘ Σ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) )  /  ∏ 𝑘  ∈  ( 𝐶  ∪  { 𝐷 } ) ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℕ ) |