Metamath Proof Explorer


Theorem mdandyv0

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016)

Ref Expression
Hypotheses mdandyv0.1 ( 𝜑 ↔ ⊥ )
mdandyv0.2 ( 𝜓 ↔ ⊤ )
mdandyv0.3 ( 𝜒 ↔ ⊥ )
mdandyv0.4 ( 𝜃 ↔ ⊥ )
mdandyv0.5 ( 𝜏 ↔ ⊥ )
mdandyv0.6 ( 𝜂 ↔ ⊥ )
Assertion mdandyv0 ( ( ( ( 𝜒𝜑 ) ∧ ( 𝜃𝜑 ) ) ∧ ( 𝜏𝜑 ) ) ∧ ( 𝜂𝜑 ) )

Proof

Step Hyp Ref Expression
1 mdandyv0.1 ( 𝜑 ↔ ⊥ )
2 mdandyv0.2 ( 𝜓 ↔ ⊤ )
3 mdandyv0.3 ( 𝜒 ↔ ⊥ )
4 mdandyv0.4 ( 𝜃 ↔ ⊥ )
5 mdandyv0.5 ( 𝜏 ↔ ⊥ )
6 mdandyv0.6 ( 𝜂 ↔ ⊥ )
7 3 1 bothfbothsame ( 𝜒𝜑 )
8 4 1 bothfbothsame ( 𝜃𝜑 )
9 7 8 pm3.2i ( ( 𝜒𝜑 ) ∧ ( 𝜃𝜑 ) )
10 5 1 bothfbothsame ( 𝜏𝜑 )
11 9 10 pm3.2i ( ( ( 𝜒𝜑 ) ∧ ( 𝜃𝜑 ) ) ∧ ( 𝜏𝜑 ) )
12 6 1 bothfbothsame ( 𝜂𝜑 )
13 11 12 pm3.2i ( ( ( ( 𝜒𝜑 ) ∧ ( 𝜃𝜑 ) ) ∧ ( 𝜏𝜑 ) ) ∧ ( 𝜂𝜑 ) )