Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyv0
Metamath Proof Explorer
Description: Given the equivalences set in the hypotheses, there exist a proof where
ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy , 6-Sep-2016)
Ref
Expression
Hypotheses
mdandyv0.1
⊢ ( 𝜑 ↔ ⊥ )
mdandyv0.2
⊢ ( 𝜓 ↔ ⊤ )
mdandyv0.3
⊢ ( 𝜒 ↔ ⊥ )
mdandyv0.4
⊢ ( 𝜃 ↔ ⊥ )
mdandyv0.5
⊢ ( 𝜏 ↔ ⊥ )
mdandyv0.6
⊢ ( 𝜂 ↔ ⊥ )
Assertion
mdandyv0
⊢ ( ( ( ( 𝜒 ↔ 𝜑 ) ∧ ( 𝜃 ↔ 𝜑 ) ) ∧ ( 𝜏 ↔ 𝜑 ) ) ∧ ( 𝜂 ↔ 𝜑 ) )
Proof
Step
Hyp
Ref
Expression
1
mdandyv0.1
⊢ ( 𝜑 ↔ ⊥ )
2
mdandyv0.2
⊢ ( 𝜓 ↔ ⊤ )
3
mdandyv0.3
⊢ ( 𝜒 ↔ ⊥ )
4
mdandyv0.4
⊢ ( 𝜃 ↔ ⊥ )
5
mdandyv0.5
⊢ ( 𝜏 ↔ ⊥ )
6
mdandyv0.6
⊢ ( 𝜂 ↔ ⊥ )
7
3 1
bothfbothsame
⊢ ( 𝜒 ↔ 𝜑 )
8
4 1
bothfbothsame
⊢ ( 𝜃 ↔ 𝜑 )
9
7 8
pm3.2i
⊢ ( ( 𝜒 ↔ 𝜑 ) ∧ ( 𝜃 ↔ 𝜑 ) )
10
5 1
bothfbothsame
⊢ ( 𝜏 ↔ 𝜑 )
11
9 10
pm3.2i
⊢ ( ( ( 𝜒 ↔ 𝜑 ) ∧ ( 𝜃 ↔ 𝜑 ) ) ∧ ( 𝜏 ↔ 𝜑 ) )
12
6 1
bothfbothsame
⊢ ( 𝜂 ↔ 𝜑 )
13
11 12
pm3.2i
⊢ ( ( ( ( 𝜒 ↔ 𝜑 ) ∧ ( 𝜃 ↔ 𝜑 ) ) ∧ ( 𝜏 ↔ 𝜑 ) ) ∧ ( 𝜂 ↔ 𝜑 ) )