Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyv10
Metamath Proof Explorer
Description: Given the equivalences set in the hypotheses, there exist a proof where
ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy , 6-Sep-2016)
Ref
Expression
Hypotheses
mdandyv10.1
⊢ ( 𝜑 ↔ ⊥ )
mdandyv10.2
⊢ ( 𝜓 ↔ ⊤ )
mdandyv10.3
⊢ ( 𝜒 ↔ ⊥ )
mdandyv10.4
⊢ ( 𝜃 ↔ ⊤ )
mdandyv10.5
⊢ ( 𝜏 ↔ ⊥ )
mdandyv10.6
⊢ ( 𝜂 ↔ ⊤ )
Assertion
mdandyv10
⊢ ( ( ( ( 𝜒 ↔ 𝜑 ) ∧ ( 𝜃 ↔ 𝜓 ) ) ∧ ( 𝜏 ↔ 𝜑 ) ) ∧ ( 𝜂 ↔ 𝜓 ) )
Proof
Step
Hyp
Ref
Expression
1
mdandyv10.1
⊢ ( 𝜑 ↔ ⊥ )
2
mdandyv10.2
⊢ ( 𝜓 ↔ ⊤ )
3
mdandyv10.3
⊢ ( 𝜒 ↔ ⊥ )
4
mdandyv10.4
⊢ ( 𝜃 ↔ ⊤ )
5
mdandyv10.5
⊢ ( 𝜏 ↔ ⊥ )
6
mdandyv10.6
⊢ ( 𝜂 ↔ ⊤ )
7
3 1
bothfbothsame
⊢ ( 𝜒 ↔ 𝜑 )
8
4 2
bothtbothsame
⊢ ( 𝜃 ↔ 𝜓 )
9
7 8
pm3.2i
⊢ ( ( 𝜒 ↔ 𝜑 ) ∧ ( 𝜃 ↔ 𝜓 ) )
10
5 1
bothfbothsame
⊢ ( 𝜏 ↔ 𝜑 )
11
9 10
pm3.2i
⊢ ( ( ( 𝜒 ↔ 𝜑 ) ∧ ( 𝜃 ↔ 𝜓 ) ) ∧ ( 𝜏 ↔ 𝜑 ) )
12
6 2
bothtbothsame
⊢ ( 𝜂 ↔ 𝜓 )
13
11 12
pm3.2i
⊢ ( ( ( ( 𝜒 ↔ 𝜑 ) ∧ ( 𝜃 ↔ 𝜓 ) ) ∧ ( 𝜏 ↔ 𝜑 ) ) ∧ ( 𝜂 ↔ 𝜓 ) )