Metamath Proof Explorer


Theorem mdandyv13

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016)

Ref Expression
Hypotheses mdandyv13.1 ( 𝜑 ↔ ⊥ )
mdandyv13.2 ( 𝜓 ↔ ⊤ )
mdandyv13.3 ( 𝜒 ↔ ⊤ )
mdandyv13.4 ( 𝜃 ↔ ⊥ )
mdandyv13.5 ( 𝜏 ↔ ⊤ )
mdandyv13.6 ( 𝜂 ↔ ⊤ )
Assertion mdandyv13 ( ( ( ( 𝜒𝜓 ) ∧ ( 𝜃𝜑 ) ) ∧ ( 𝜏𝜓 ) ) ∧ ( 𝜂𝜓 ) )

Proof

Step Hyp Ref Expression
1 mdandyv13.1 ( 𝜑 ↔ ⊥ )
2 mdandyv13.2 ( 𝜓 ↔ ⊤ )
3 mdandyv13.3 ( 𝜒 ↔ ⊤ )
4 mdandyv13.4 ( 𝜃 ↔ ⊥ )
5 mdandyv13.5 ( 𝜏 ↔ ⊤ )
6 mdandyv13.6 ( 𝜂 ↔ ⊤ )
7 3 2 bothtbothsame ( 𝜒𝜓 )
8 4 1 bothfbothsame ( 𝜃𝜑 )
9 7 8 pm3.2i ( ( 𝜒𝜓 ) ∧ ( 𝜃𝜑 ) )
10 5 2 bothtbothsame ( 𝜏𝜓 )
11 9 10 pm3.2i ( ( ( 𝜒𝜓 ) ∧ ( 𝜃𝜑 ) ) ∧ ( 𝜏𝜓 ) )
12 6 2 bothtbothsame ( 𝜂𝜓 )
13 11 12 pm3.2i ( ( ( ( 𝜒𝜓 ) ∧ ( 𝜃𝜑 ) ) ∧ ( 𝜏𝜓 ) ) ∧ ( 𝜂𝜓 ) )