Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyv15
Metamath Proof Explorer
Description: Given the equivalences set in the hypotheses, there exist a proof where
ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy , 6-Sep-2016)
Ref
Expression
Hypotheses
mdandyv15.1
⊢ ( 𝜑 ↔ ⊥ )
mdandyv15.2
⊢ ( 𝜓 ↔ ⊤ )
mdandyv15.3
⊢ ( 𝜒 ↔ ⊤ )
mdandyv15.4
⊢ ( 𝜃 ↔ ⊤ )
mdandyv15.5
⊢ ( 𝜏 ↔ ⊤ )
mdandyv15.6
⊢ ( 𝜂 ↔ ⊤ )
Assertion
mdandyv15
⊢ ( ( ( ( 𝜒 ↔ 𝜓 ) ∧ ( 𝜃 ↔ 𝜓 ) ) ∧ ( 𝜏 ↔ 𝜓 ) ) ∧ ( 𝜂 ↔ 𝜓 ) )
Proof
Step
Hyp
Ref
Expression
1
mdandyv15.1
⊢ ( 𝜑 ↔ ⊥ )
2
mdandyv15.2
⊢ ( 𝜓 ↔ ⊤ )
3
mdandyv15.3
⊢ ( 𝜒 ↔ ⊤ )
4
mdandyv15.4
⊢ ( 𝜃 ↔ ⊤ )
5
mdandyv15.5
⊢ ( 𝜏 ↔ ⊤ )
6
mdandyv15.6
⊢ ( 𝜂 ↔ ⊤ )
7
3 2
bothtbothsame
⊢ ( 𝜒 ↔ 𝜓 )
8
4 2
bothtbothsame
⊢ ( 𝜃 ↔ 𝜓 )
9
7 8
pm3.2i
⊢ ( ( 𝜒 ↔ 𝜓 ) ∧ ( 𝜃 ↔ 𝜓 ) )
10
5 2
bothtbothsame
⊢ ( 𝜏 ↔ 𝜓 )
11
9 10
pm3.2i
⊢ ( ( ( 𝜒 ↔ 𝜓 ) ∧ ( 𝜃 ↔ 𝜓 ) ) ∧ ( 𝜏 ↔ 𝜓 ) )
12
6 2
bothtbothsame
⊢ ( 𝜂 ↔ 𝜓 )
13
11 12
pm3.2i
⊢ ( ( ( ( 𝜒 ↔ 𝜓 ) ∧ ( 𝜃 ↔ 𝜓 ) ) ∧ ( 𝜏 ↔ 𝜓 ) ) ∧ ( 𝜂 ↔ 𝜓 ) )