Metamath Proof Explorer


Theorem mdandyv5

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016)

Ref Expression
Hypotheses mdandyv5.1 ( 𝜑 ↔ ⊥ )
mdandyv5.2 ( 𝜓 ↔ ⊤ )
mdandyv5.3 ( 𝜒 ↔ ⊤ )
mdandyv5.4 ( 𝜃 ↔ ⊥ )
mdandyv5.5 ( 𝜏 ↔ ⊤ )
mdandyv5.6 ( 𝜂 ↔ ⊥ )
Assertion mdandyv5 ( ( ( ( 𝜒𝜓 ) ∧ ( 𝜃𝜑 ) ) ∧ ( 𝜏𝜓 ) ) ∧ ( 𝜂𝜑 ) )

Proof

Step Hyp Ref Expression
1 mdandyv5.1 ( 𝜑 ↔ ⊥ )
2 mdandyv5.2 ( 𝜓 ↔ ⊤ )
3 mdandyv5.3 ( 𝜒 ↔ ⊤ )
4 mdandyv5.4 ( 𝜃 ↔ ⊥ )
5 mdandyv5.5 ( 𝜏 ↔ ⊤ )
6 mdandyv5.6 ( 𝜂 ↔ ⊥ )
7 3 2 bothtbothsame ( 𝜒𝜓 )
8 4 1 bothfbothsame ( 𝜃𝜑 )
9 7 8 pm3.2i ( ( 𝜒𝜓 ) ∧ ( 𝜃𝜑 ) )
10 5 2 bothtbothsame ( 𝜏𝜓 )
11 9 10 pm3.2i ( ( ( 𝜒𝜓 ) ∧ ( 𝜃𝜑 ) ) ∧ ( 𝜏𝜓 ) )
12 6 1 bothfbothsame ( 𝜂𝜑 )
13 11 12 pm3.2i ( ( ( ( 𝜒𝜓 ) ∧ ( 𝜃𝜑 ) ) ∧ ( 𝜏𝜓 ) ) ∧ ( 𝜂𝜑 ) )