Metamath Proof Explorer


Theorem mdandyv6

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016)

Ref Expression
Hypotheses mdandyv6.1 ( 𝜑 ↔ ⊥ )
mdandyv6.2 ( 𝜓 ↔ ⊤ )
mdandyv6.3 ( 𝜒 ↔ ⊥ )
mdandyv6.4 ( 𝜃 ↔ ⊤ )
mdandyv6.5 ( 𝜏 ↔ ⊤ )
mdandyv6.6 ( 𝜂 ↔ ⊥ )
Assertion mdandyv6 ( ( ( ( 𝜒𝜑 ) ∧ ( 𝜃𝜓 ) ) ∧ ( 𝜏𝜓 ) ) ∧ ( 𝜂𝜑 ) )

Proof

Step Hyp Ref Expression
1 mdandyv6.1 ( 𝜑 ↔ ⊥ )
2 mdandyv6.2 ( 𝜓 ↔ ⊤ )
3 mdandyv6.3 ( 𝜒 ↔ ⊥ )
4 mdandyv6.4 ( 𝜃 ↔ ⊤ )
5 mdandyv6.5 ( 𝜏 ↔ ⊤ )
6 mdandyv6.6 ( 𝜂 ↔ ⊥ )
7 3 1 bothfbothsame ( 𝜒𝜑 )
8 4 2 bothtbothsame ( 𝜃𝜓 )
9 7 8 pm3.2i ( ( 𝜒𝜑 ) ∧ ( 𝜃𝜓 ) )
10 5 2 bothtbothsame ( 𝜏𝜓 )
11 9 10 pm3.2i ( ( ( 𝜒𝜑 ) ∧ ( 𝜃𝜓 ) ) ∧ ( 𝜏𝜓 ) )
12 6 1 bothfbothsame ( 𝜂𝜑 )
13 11 12 pm3.2i ( ( ( ( 𝜒𝜑 ) ∧ ( 𝜃𝜓 ) ) ∧ ( 𝜏𝜓 ) ) ∧ ( 𝜂𝜑 ) )