Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyvr1
Metamath Proof Explorer
Description: Given the equivalences set in the hypotheses, there exist a proof where
ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy , 7-Sep-2016)
Ref
Expression
Hypotheses
mdandyvr1.1
⊢ ( 𝜑 ↔ 𝜁 )
mdandyvr1.2
⊢ ( 𝜓 ↔ 𝜎 )
mdandyvr1.3
⊢ ( 𝜒 ↔ 𝜓 )
mdandyvr1.4
⊢ ( 𝜃 ↔ 𝜑 )
mdandyvr1.5
⊢ ( 𝜏 ↔ 𝜑 )
mdandyvr1.6
⊢ ( 𝜂 ↔ 𝜑 )
Assertion
mdandyvr1
⊢ ( ( ( ( 𝜒 ↔ 𝜎 ) ∧ ( 𝜃 ↔ 𝜁 ) ) ∧ ( 𝜏 ↔ 𝜁 ) ) ∧ ( 𝜂 ↔ 𝜁 ) )
Proof
Step
Hyp
Ref
Expression
1
mdandyvr1.1
⊢ ( 𝜑 ↔ 𝜁 )
2
mdandyvr1.2
⊢ ( 𝜓 ↔ 𝜎 )
3
mdandyvr1.3
⊢ ( 𝜒 ↔ 𝜓 )
4
mdandyvr1.4
⊢ ( 𝜃 ↔ 𝜑 )
5
mdandyvr1.5
⊢ ( 𝜏 ↔ 𝜑 )
6
mdandyvr1.6
⊢ ( 𝜂 ↔ 𝜑 )
7
3 2
bitri
⊢ ( 𝜒 ↔ 𝜎 )
8
4 1
bitri
⊢ ( 𝜃 ↔ 𝜁 )
9
7 8
pm3.2i
⊢ ( ( 𝜒 ↔ 𝜎 ) ∧ ( 𝜃 ↔ 𝜁 ) )
10
5 1
bitri
⊢ ( 𝜏 ↔ 𝜁 )
11
9 10
pm3.2i
⊢ ( ( ( 𝜒 ↔ 𝜎 ) ∧ ( 𝜃 ↔ 𝜁 ) ) ∧ ( 𝜏 ↔ 𝜁 ) )
12
6 1
bitri
⊢ ( 𝜂 ↔ 𝜁 )
13
11 12
pm3.2i
⊢ ( ( ( ( 𝜒 ↔ 𝜎 ) ∧ ( 𝜃 ↔ 𝜁 ) ) ∧ ( 𝜏 ↔ 𝜁 ) ) ∧ ( 𝜂 ↔ 𝜁 ) )