Metamath Proof Explorer


Theorem mdandyvr10

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr10.1 ( 𝜑𝜁 )
mdandyvr10.2 ( 𝜓𝜎 )
mdandyvr10.3 ( 𝜒𝜑 )
mdandyvr10.4 ( 𝜃𝜓 )
mdandyvr10.5 ( 𝜏𝜑 )
mdandyvr10.6 ( 𝜂𝜓 )
Assertion mdandyvr10 ( ( ( ( 𝜒𝜁 ) ∧ ( 𝜃𝜎 ) ) ∧ ( 𝜏𝜁 ) ) ∧ ( 𝜂𝜎 ) )

Proof

Step Hyp Ref Expression
1 mdandyvr10.1 ( 𝜑𝜁 )
2 mdandyvr10.2 ( 𝜓𝜎 )
3 mdandyvr10.3 ( 𝜒𝜑 )
4 mdandyvr10.4 ( 𝜃𝜓 )
5 mdandyvr10.5 ( 𝜏𝜑 )
6 mdandyvr10.6 ( 𝜂𝜓 )
7 2 1 3 4 5 6 mdandyvr5 ( ( ( ( 𝜒𝜁 ) ∧ ( 𝜃𝜎 ) ) ∧ ( 𝜏𝜁 ) ) ∧ ( 𝜂𝜎 ) )