Metamath Proof Explorer


Theorem mdandyvr15

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr15.1 ( 𝜑𝜁 )
mdandyvr15.2 ( 𝜓𝜎 )
mdandyvr15.3 ( 𝜒𝜓 )
mdandyvr15.4 ( 𝜃𝜓 )
mdandyvr15.5 ( 𝜏𝜓 )
mdandyvr15.6 ( 𝜂𝜓 )
Assertion mdandyvr15 ( ( ( ( 𝜒𝜎 ) ∧ ( 𝜃𝜎 ) ) ∧ ( 𝜏𝜎 ) ) ∧ ( 𝜂𝜎 ) )

Proof

Step Hyp Ref Expression
1 mdandyvr15.1 ( 𝜑𝜁 )
2 mdandyvr15.2 ( 𝜓𝜎 )
3 mdandyvr15.3 ( 𝜒𝜓 )
4 mdandyvr15.4 ( 𝜃𝜓 )
5 mdandyvr15.5 ( 𝜏𝜓 )
6 mdandyvr15.6 ( 𝜂𝜓 )
7 2 1 3 4 5 6 mdandyvr0 ( ( ( ( 𝜒𝜎 ) ∧ ( 𝜃𝜎 ) ) ∧ ( 𝜏𝜎 ) ) ∧ ( 𝜂𝜎 ) )