Metamath Proof Explorer


Theorem mdandyvr8

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr8.1 ( 𝜑𝜁 )
mdandyvr8.2 ( 𝜓𝜎 )
mdandyvr8.3 ( 𝜒𝜑 )
mdandyvr8.4 ( 𝜃𝜑 )
mdandyvr8.5 ( 𝜏𝜑 )
mdandyvr8.6 ( 𝜂𝜓 )
Assertion mdandyvr8 ( ( ( ( 𝜒𝜁 ) ∧ ( 𝜃𝜁 ) ) ∧ ( 𝜏𝜁 ) ) ∧ ( 𝜂𝜎 ) )

Proof

Step Hyp Ref Expression
1 mdandyvr8.1 ( 𝜑𝜁 )
2 mdandyvr8.2 ( 𝜓𝜎 )
3 mdandyvr8.3 ( 𝜒𝜑 )
4 mdandyvr8.4 ( 𝜃𝜑 )
5 mdandyvr8.5 ( 𝜏𝜑 )
6 mdandyvr8.6 ( 𝜂𝜓 )
7 2 1 3 4 5 6 mdandyvr7 ( ( ( ( 𝜒𝜁 ) ∧ ( 𝜃𝜁 ) ) ∧ ( 𝜏𝜁 ) ) ∧ ( 𝜂𝜎 ) )