Metamath Proof Explorer


Theorem mdandyvrx0

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx0.1 ( 𝜑𝜁 )
mdandyvrx0.2 ( 𝜓𝜎 )
mdandyvrx0.3 ( 𝜒𝜑 )
mdandyvrx0.4 ( 𝜃𝜑 )
mdandyvrx0.5 ( 𝜏𝜑 )
mdandyvrx0.6 ( 𝜂𝜑 )
Assertion mdandyvrx0 ( ( ( ( 𝜒𝜁 ) ∧ ( 𝜃𝜁 ) ) ∧ ( 𝜏𝜁 ) ) ∧ ( 𝜂𝜁 ) )

Proof

Step Hyp Ref Expression
1 mdandyvrx0.1 ( 𝜑𝜁 )
2 mdandyvrx0.2 ( 𝜓𝜎 )
3 mdandyvrx0.3 ( 𝜒𝜑 )
4 mdandyvrx0.4 ( 𝜃𝜑 )
5 mdandyvrx0.5 ( 𝜏𝜑 )
6 mdandyvrx0.6 ( 𝜂𝜑 )
7 1 3 axorbciffatcxorb ( 𝜒𝜁 )
8 1 4 axorbciffatcxorb ( 𝜃𝜁 )
9 7 8 pm3.2i ( ( 𝜒𝜁 ) ∧ ( 𝜃𝜁 ) )
10 1 5 axorbciffatcxorb ( 𝜏𝜁 )
11 9 10 pm3.2i ( ( ( 𝜒𝜁 ) ∧ ( 𝜃𝜁 ) ) ∧ ( 𝜏𝜁 ) )
12 1 6 axorbciffatcxorb ( 𝜂𝜁 )
13 11 12 pm3.2i ( ( ( ( 𝜒𝜁 ) ∧ ( 𝜃𝜁 ) ) ∧ ( 𝜏𝜁 ) ) ∧ ( 𝜂𝜁 ) )