Metamath Proof Explorer


Theorem mdandyvrx10

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx10.1 ( 𝜑𝜁 )
mdandyvrx10.2 ( 𝜓𝜎 )
mdandyvrx10.3 ( 𝜒𝜑 )
mdandyvrx10.4 ( 𝜃𝜓 )
mdandyvrx10.5 ( 𝜏𝜑 )
mdandyvrx10.6 ( 𝜂𝜓 )
Assertion mdandyvrx10 ( ( ( ( 𝜒𝜁 ) ∧ ( 𝜃𝜎 ) ) ∧ ( 𝜏𝜁 ) ) ∧ ( 𝜂𝜎 ) )

Proof

Step Hyp Ref Expression
1 mdandyvrx10.1 ( 𝜑𝜁 )
2 mdandyvrx10.2 ( 𝜓𝜎 )
3 mdandyvrx10.3 ( 𝜒𝜑 )
4 mdandyvrx10.4 ( 𝜃𝜓 )
5 mdandyvrx10.5 ( 𝜏𝜑 )
6 mdandyvrx10.6 ( 𝜂𝜓 )
7 2 1 3 4 5 6 mdandyvrx5 ( ( ( ( 𝜒𝜁 ) ∧ ( 𝜃𝜎 ) ) ∧ ( 𝜏𝜁 ) ) ∧ ( 𝜂𝜎 ) )