Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyvrx10
Metamath Proof Explorer
Description: Given the exclusivities set in the hypotheses, there exist a proof where
ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin
Udandy , 7-Sep-2016)
Ref
Expression
Hypotheses
mdandyvrx10.1
⊢ ( 𝜑 ⊻ 𝜁 )
mdandyvrx10.2
⊢ ( 𝜓 ⊻ 𝜎 )
mdandyvrx10.3
⊢ ( 𝜒 ↔ 𝜑 )
mdandyvrx10.4
⊢ ( 𝜃 ↔ 𝜓 )
mdandyvrx10.5
⊢ ( 𝜏 ↔ 𝜑 )
mdandyvrx10.6
⊢ ( 𝜂 ↔ 𝜓 )
Assertion
mdandyvrx10
⊢ ( ( ( ( 𝜒 ⊻ 𝜁 ) ∧ ( 𝜃 ⊻ 𝜎 ) ) ∧ ( 𝜏 ⊻ 𝜁 ) ) ∧ ( 𝜂 ⊻ 𝜎 ) )
Proof
Step
Hyp
Ref
Expression
1
mdandyvrx10.1
⊢ ( 𝜑 ⊻ 𝜁 )
2
mdandyvrx10.2
⊢ ( 𝜓 ⊻ 𝜎 )
3
mdandyvrx10.3
⊢ ( 𝜒 ↔ 𝜑 )
4
mdandyvrx10.4
⊢ ( 𝜃 ↔ 𝜓 )
5
mdandyvrx10.5
⊢ ( 𝜏 ↔ 𝜑 )
6
mdandyvrx10.6
⊢ ( 𝜂 ↔ 𝜓 )
7
2 1 3 4 5 6
mdandyvrx5
⊢ ( ( ( ( 𝜒 ⊻ 𝜁 ) ∧ ( 𝜃 ⊻ 𝜎 ) ) ∧ ( 𝜏 ⊻ 𝜁 ) ) ∧ ( 𝜂 ⊻ 𝜎 ) )