Metamath Proof Explorer


Theorem mdandyvrx11

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx11.1 ( 𝜑𝜁 )
mdandyvrx11.2 ( 𝜓𝜎 )
mdandyvrx11.3 ( 𝜒𝜓 )
mdandyvrx11.4 ( 𝜃𝜓 )
mdandyvrx11.5 ( 𝜏𝜑 )
mdandyvrx11.6 ( 𝜂𝜓 )
Assertion mdandyvrx11 ( ( ( ( 𝜒𝜎 ) ∧ ( 𝜃𝜎 ) ) ∧ ( 𝜏𝜁 ) ) ∧ ( 𝜂𝜎 ) )

Proof

Step Hyp Ref Expression
1 mdandyvrx11.1 ( 𝜑𝜁 )
2 mdandyvrx11.2 ( 𝜓𝜎 )
3 mdandyvrx11.3 ( 𝜒𝜓 )
4 mdandyvrx11.4 ( 𝜃𝜓 )
5 mdandyvrx11.5 ( 𝜏𝜑 )
6 mdandyvrx11.6 ( 𝜂𝜓 )
7 2 1 3 4 5 6 mdandyvrx4 ( ( ( ( 𝜒𝜎 ) ∧ ( 𝜃𝜎 ) ) ∧ ( 𝜏𝜁 ) ) ∧ ( 𝜂𝜎 ) )