Metamath Proof Explorer


Theorem mdandyvrx12

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx12.1 ( 𝜑𝜁 )
mdandyvrx12.2 ( 𝜓𝜎 )
mdandyvrx12.3 ( 𝜒𝜑 )
mdandyvrx12.4 ( 𝜃𝜑 )
mdandyvrx12.5 ( 𝜏𝜓 )
mdandyvrx12.6 ( 𝜂𝜓 )
Assertion mdandyvrx12 ( ( ( ( 𝜒𝜁 ) ∧ ( 𝜃𝜁 ) ) ∧ ( 𝜏𝜎 ) ) ∧ ( 𝜂𝜎 ) )

Proof

Step Hyp Ref Expression
1 mdandyvrx12.1 ( 𝜑𝜁 )
2 mdandyvrx12.2 ( 𝜓𝜎 )
3 mdandyvrx12.3 ( 𝜒𝜑 )
4 mdandyvrx12.4 ( 𝜃𝜑 )
5 mdandyvrx12.5 ( 𝜏𝜓 )
6 mdandyvrx12.6 ( 𝜂𝜓 )
7 2 1 3 4 5 6 mdandyvrx3 ( ( ( ( 𝜒𝜁 ) ∧ ( 𝜃𝜁 ) ) ∧ ( 𝜏𝜎 ) ) ∧ ( 𝜂𝜎 ) )