Metamath Proof Explorer


Theorem mdandyvrx13

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx13.1 ( 𝜑𝜁 )
mdandyvrx13.2 ( 𝜓𝜎 )
mdandyvrx13.3 ( 𝜒𝜓 )
mdandyvrx13.4 ( 𝜃𝜑 )
mdandyvrx13.5 ( 𝜏𝜓 )
mdandyvrx13.6 ( 𝜂𝜓 )
Assertion mdandyvrx13 ( ( ( ( 𝜒𝜎 ) ∧ ( 𝜃𝜁 ) ) ∧ ( 𝜏𝜎 ) ) ∧ ( 𝜂𝜎 ) )

Proof

Step Hyp Ref Expression
1 mdandyvrx13.1 ( 𝜑𝜁 )
2 mdandyvrx13.2 ( 𝜓𝜎 )
3 mdandyvrx13.3 ( 𝜒𝜓 )
4 mdandyvrx13.4 ( 𝜃𝜑 )
5 mdandyvrx13.5 ( 𝜏𝜓 )
6 mdandyvrx13.6 ( 𝜂𝜓 )
7 2 1 3 4 5 6 mdandyvrx2 ( ( ( ( 𝜒𝜎 ) ∧ ( 𝜃𝜁 ) ) ∧ ( 𝜏𝜎 ) ) ∧ ( 𝜂𝜎 ) )