Metamath Proof Explorer


Theorem mdandyvrx14

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx14.1 ( 𝜑𝜁 )
mdandyvrx14.2 ( 𝜓𝜎 )
mdandyvrx14.3 ( 𝜒𝜑 )
mdandyvrx14.4 ( 𝜃𝜓 )
mdandyvrx14.5 ( 𝜏𝜓 )
mdandyvrx14.6 ( 𝜂𝜓 )
Assertion mdandyvrx14 ( ( ( ( 𝜒𝜁 ) ∧ ( 𝜃𝜎 ) ) ∧ ( 𝜏𝜎 ) ) ∧ ( 𝜂𝜎 ) )

Proof

Step Hyp Ref Expression
1 mdandyvrx14.1 ( 𝜑𝜁 )
2 mdandyvrx14.2 ( 𝜓𝜎 )
3 mdandyvrx14.3 ( 𝜒𝜑 )
4 mdandyvrx14.4 ( 𝜃𝜓 )
5 mdandyvrx14.5 ( 𝜏𝜓 )
6 mdandyvrx14.6 ( 𝜂𝜓 )
7 2 1 3 4 5 6 mdandyvrx1 ( ( ( ( 𝜒𝜁 ) ∧ ( 𝜃𝜎 ) ) ∧ ( 𝜏𝜎 ) ) ∧ ( 𝜂𝜎 ) )