Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyvrx15
Metamath Proof Explorer
Description: Given the exclusivities set in the hypotheses, there exist a proof where
ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin
Udandy , 7-Sep-2016)
Ref
Expression
Hypotheses
mdandyvrx15.1
⊢ ( 𝜑 ⊻ 𝜁 )
mdandyvrx15.2
⊢ ( 𝜓 ⊻ 𝜎 )
mdandyvrx15.3
⊢ ( 𝜒 ↔ 𝜓 )
mdandyvrx15.4
⊢ ( 𝜃 ↔ 𝜓 )
mdandyvrx15.5
⊢ ( 𝜏 ↔ 𝜓 )
mdandyvrx15.6
⊢ ( 𝜂 ↔ 𝜓 )
Assertion
mdandyvrx15
⊢ ( ( ( ( 𝜒 ⊻ 𝜎 ) ∧ ( 𝜃 ⊻ 𝜎 ) ) ∧ ( 𝜏 ⊻ 𝜎 ) ) ∧ ( 𝜂 ⊻ 𝜎 ) )
Proof
Step
Hyp
Ref
Expression
1
mdandyvrx15.1
⊢ ( 𝜑 ⊻ 𝜁 )
2
mdandyvrx15.2
⊢ ( 𝜓 ⊻ 𝜎 )
3
mdandyvrx15.3
⊢ ( 𝜒 ↔ 𝜓 )
4
mdandyvrx15.4
⊢ ( 𝜃 ↔ 𝜓 )
5
mdandyvrx15.5
⊢ ( 𝜏 ↔ 𝜓 )
6
mdandyvrx15.6
⊢ ( 𝜂 ↔ 𝜓 )
7
2 1 3 4 5 6
mdandyvrx0
⊢ ( ( ( ( 𝜒 ⊻ 𝜎 ) ∧ ( 𝜃 ⊻ 𝜎 ) ) ∧ ( 𝜏 ⊻ 𝜎 ) ) ∧ ( 𝜂 ⊻ 𝜎 ) )