Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyvrx2
Metamath Proof Explorer
Description: Given the exclusivities set in the hypotheses, there exist a proof where
ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin
Udandy , 7-Sep-2016)
Ref
Expression
Hypotheses
mdandyvrx2.1
⊢ ( 𝜑 ⊻ 𝜁 )
mdandyvrx2.2
⊢ ( 𝜓 ⊻ 𝜎 )
mdandyvrx2.3
⊢ ( 𝜒 ↔ 𝜑 )
mdandyvrx2.4
⊢ ( 𝜃 ↔ 𝜓 )
mdandyvrx2.5
⊢ ( 𝜏 ↔ 𝜑 )
mdandyvrx2.6
⊢ ( 𝜂 ↔ 𝜑 )
Assertion
mdandyvrx2
⊢ ( ( ( ( 𝜒 ⊻ 𝜁 ) ∧ ( 𝜃 ⊻ 𝜎 ) ) ∧ ( 𝜏 ⊻ 𝜁 ) ) ∧ ( 𝜂 ⊻ 𝜁 ) )
Proof
Step
Hyp
Ref
Expression
1
mdandyvrx2.1
⊢ ( 𝜑 ⊻ 𝜁 )
2
mdandyvrx2.2
⊢ ( 𝜓 ⊻ 𝜎 )
3
mdandyvrx2.3
⊢ ( 𝜒 ↔ 𝜑 )
4
mdandyvrx2.4
⊢ ( 𝜃 ↔ 𝜓 )
5
mdandyvrx2.5
⊢ ( 𝜏 ↔ 𝜑 )
6
mdandyvrx2.6
⊢ ( 𝜂 ↔ 𝜑 )
7
1 3
axorbciffatcxorb
⊢ ( 𝜒 ⊻ 𝜁 )
8
2 4
axorbciffatcxorb
⊢ ( 𝜃 ⊻ 𝜎 )
9
7 8
pm3.2i
⊢ ( ( 𝜒 ⊻ 𝜁 ) ∧ ( 𝜃 ⊻ 𝜎 ) )
10
1 5
axorbciffatcxorb
⊢ ( 𝜏 ⊻ 𝜁 )
11
9 10
pm3.2i
⊢ ( ( ( 𝜒 ⊻ 𝜁 ) ∧ ( 𝜃 ⊻ 𝜎 ) ) ∧ ( 𝜏 ⊻ 𝜁 ) )
12
1 6
axorbciffatcxorb
⊢ ( 𝜂 ⊻ 𝜁 )
13
11 12
pm3.2i
⊢ ( ( ( ( 𝜒 ⊻ 𝜁 ) ∧ ( 𝜃 ⊻ 𝜎 ) ) ∧ ( 𝜏 ⊻ 𝜁 ) ) ∧ ( 𝜂 ⊻ 𝜁 ) )