Metamath Proof Explorer


Theorem mdandyvrx9

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx9.1 ( 𝜑𝜁 )
mdandyvrx9.2 ( 𝜓𝜎 )
mdandyvrx9.3 ( 𝜒𝜓 )
mdandyvrx9.4 ( 𝜃𝜑 )
mdandyvrx9.5 ( 𝜏𝜑 )
mdandyvrx9.6 ( 𝜂𝜓 )
Assertion mdandyvrx9 ( ( ( ( 𝜒𝜎 ) ∧ ( 𝜃𝜁 ) ) ∧ ( 𝜏𝜁 ) ) ∧ ( 𝜂𝜎 ) )

Proof

Step Hyp Ref Expression
1 mdandyvrx9.1 ( 𝜑𝜁 )
2 mdandyvrx9.2 ( 𝜓𝜎 )
3 mdandyvrx9.3 ( 𝜒𝜓 )
4 mdandyvrx9.4 ( 𝜃𝜑 )
5 mdandyvrx9.5 ( 𝜏𝜑 )
6 mdandyvrx9.6 ( 𝜂𝜓 )
7 2 1 3 4 5 6 mdandyvrx6 ( ( ( ( 𝜒𝜎 ) ∧ ( 𝜃𝜁 ) ) ∧ ( 𝜏𝜁 ) ) ∧ ( 𝜂𝜎 ) )