Metamath Proof Explorer


Theorem mdbr

Description: Binary relation expressing <. A , B >. is a modular pair. Definition 1.1 of MaedaMaeda p. 1. (Contributed by NM, 14-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion mdbr ( ( 𝐴C𝐵C ) → ( 𝐴 𝑀 𝐵 ↔ ∀ 𝑥C ( 𝑥𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 eleq1 ( 𝑦 = 𝐴 → ( 𝑦C𝐴C ) )
2 1 anbi1d ( 𝑦 = 𝐴 → ( ( 𝑦C𝑧C ) ↔ ( 𝐴C𝑧C ) ) )
3 oveq2 ( 𝑦 = 𝐴 → ( 𝑥 𝑦 ) = ( 𝑥 𝐴 ) )
4 3 ineq1d ( 𝑦 = 𝐴 → ( ( 𝑥 𝑦 ) ∩ 𝑧 ) = ( ( 𝑥 𝐴 ) ∩ 𝑧 ) )
5 ineq1 ( 𝑦 = 𝐴 → ( 𝑦𝑧 ) = ( 𝐴𝑧 ) )
6 5 oveq2d ( 𝑦 = 𝐴 → ( 𝑥 ( 𝑦𝑧 ) ) = ( 𝑥 ( 𝐴𝑧 ) ) )
7 4 6 eqeq12d ( 𝑦 = 𝐴 → ( ( ( 𝑥 𝑦 ) ∩ 𝑧 ) = ( 𝑥 ( 𝑦𝑧 ) ) ↔ ( ( 𝑥 𝐴 ) ∩ 𝑧 ) = ( 𝑥 ( 𝐴𝑧 ) ) ) )
8 7 imbi2d ( 𝑦 = 𝐴 → ( ( 𝑥𝑧 → ( ( 𝑥 𝑦 ) ∩ 𝑧 ) = ( 𝑥 ( 𝑦𝑧 ) ) ) ↔ ( 𝑥𝑧 → ( ( 𝑥 𝐴 ) ∩ 𝑧 ) = ( 𝑥 ( 𝐴𝑧 ) ) ) ) )
9 8 ralbidv ( 𝑦 = 𝐴 → ( ∀ 𝑥C ( 𝑥𝑧 → ( ( 𝑥 𝑦 ) ∩ 𝑧 ) = ( 𝑥 ( 𝑦𝑧 ) ) ) ↔ ∀ 𝑥C ( 𝑥𝑧 → ( ( 𝑥 𝐴 ) ∩ 𝑧 ) = ( 𝑥 ( 𝐴𝑧 ) ) ) ) )
10 2 9 anbi12d ( 𝑦 = 𝐴 → ( ( ( 𝑦C𝑧C ) ∧ ∀ 𝑥C ( 𝑥𝑧 → ( ( 𝑥 𝑦 ) ∩ 𝑧 ) = ( 𝑥 ( 𝑦𝑧 ) ) ) ) ↔ ( ( 𝐴C𝑧C ) ∧ ∀ 𝑥C ( 𝑥𝑧 → ( ( 𝑥 𝐴 ) ∩ 𝑧 ) = ( 𝑥 ( 𝐴𝑧 ) ) ) ) ) )
11 eleq1 ( 𝑧 = 𝐵 → ( 𝑧C𝐵C ) )
12 11 anbi2d ( 𝑧 = 𝐵 → ( ( 𝐴C𝑧C ) ↔ ( 𝐴C𝐵C ) ) )
13 sseq2 ( 𝑧 = 𝐵 → ( 𝑥𝑧𝑥𝐵 ) )
14 ineq2 ( 𝑧 = 𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝑧 ) = ( ( 𝑥 𝐴 ) ∩ 𝐵 ) )
15 ineq2 ( 𝑧 = 𝐵 → ( 𝐴𝑧 ) = ( 𝐴𝐵 ) )
16 15 oveq2d ( 𝑧 = 𝐵 → ( 𝑥 ( 𝐴𝑧 ) ) = ( 𝑥 ( 𝐴𝐵 ) ) )
17 14 16 eqeq12d ( 𝑧 = 𝐵 → ( ( ( 𝑥 𝐴 ) ∩ 𝑧 ) = ( 𝑥 ( 𝐴𝑧 ) ) ↔ ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) )
18 13 17 imbi12d ( 𝑧 = 𝐵 → ( ( 𝑥𝑧 → ( ( 𝑥 𝐴 ) ∩ 𝑧 ) = ( 𝑥 ( 𝐴𝑧 ) ) ) ↔ ( 𝑥𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) ) )
19 18 ralbidv ( 𝑧 = 𝐵 → ( ∀ 𝑥C ( 𝑥𝑧 → ( ( 𝑥 𝐴 ) ∩ 𝑧 ) = ( 𝑥 ( 𝐴𝑧 ) ) ) ↔ ∀ 𝑥C ( 𝑥𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) ) )
20 12 19 anbi12d ( 𝑧 = 𝐵 → ( ( ( 𝐴C𝑧C ) ∧ ∀ 𝑥C ( 𝑥𝑧 → ( ( 𝑥 𝐴 ) ∩ 𝑧 ) = ( 𝑥 ( 𝐴𝑧 ) ) ) ) ↔ ( ( 𝐴C𝐵C ) ∧ ∀ 𝑥C ( 𝑥𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) ) ) )
21 df-md 𝑀 = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( ( 𝑦C𝑧C ) ∧ ∀ 𝑥C ( 𝑥𝑧 → ( ( 𝑥 𝑦 ) ∩ 𝑧 ) = ( 𝑥 ( 𝑦𝑧 ) ) ) ) }
22 10 20 21 brabg ( ( 𝐴C𝐵C ) → ( 𝐴 𝑀 𝐵 ↔ ( ( 𝐴C𝐵C ) ∧ ∀ 𝑥C ( 𝑥𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) ) ) )
23 22 bianabs ( ( 𝐴C𝐵C ) → ( 𝐴 𝑀 𝐵 ↔ ∀ 𝑥C ( 𝑥𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) ) )