Metamath Proof Explorer


Theorem mddmd

Description: The modular pair property expressed in terms of the dual modular pair property. (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion mddmd ( ( 𝐴C𝐵C ) → ( 𝐴 𝑀 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀* ( ⊥ ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 choccl ( 𝐴C → ( ⊥ ‘ 𝐴 ) ∈ C )
2 choccl ( 𝐵C → ( ⊥ ‘ 𝐵 ) ∈ C )
3 dmdmd ( ( ( ⊥ ‘ 𝐴 ) ∈ C ∧ ( ⊥ ‘ 𝐵 ) ∈ C ) → ( ( ⊥ ‘ 𝐴 ) 𝑀* ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) 𝑀 ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) )
4 1 2 3 syl2an ( ( 𝐴C𝐵C ) → ( ( ⊥ ‘ 𝐴 ) 𝑀* ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) 𝑀 ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) )
5 ococ ( 𝐴C → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 )
6 ococ ( 𝐵C → ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) = 𝐵 )
7 5 6 breqan12d ( ( 𝐴C𝐵C ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) 𝑀 ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ↔ 𝐴 𝑀 𝐵 ) )
8 4 7 bitr2d ( ( 𝐴C𝐵C ) → ( 𝐴 𝑀 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀* ( ⊥ ‘ 𝐵 ) ) )