Step |
Hyp |
Ref |
Expression |
1 |
|
mdegaddle.y |
⊢ 𝑌 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
mdegaddle.d |
⊢ 𝐷 = ( 𝐼 mDeg 𝑅 ) |
3 |
|
mdegaddle.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
4 |
|
mdegaddle.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
mdegaddle.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
6 |
|
mdegaddle.p |
⊢ + = ( +g ‘ 𝑌 ) |
7 |
|
mdegaddle.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
8 |
|
mdegaddle.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
9 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
10 |
1 5 9 6 7 8
|
mpladd |
⊢ ( 𝜑 → ( 𝐹 + 𝐺 ) = ( 𝐹 ∘f ( +g ‘ 𝑅 ) 𝐺 ) ) |
11 |
10
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐹 + 𝐺 ) ‘ 𝑐 ) = ( ( 𝐹 ∘f ( +g ‘ 𝑅 ) 𝐺 ) ‘ 𝑐 ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝐹 + 𝐺 ) ‘ 𝑐 ) = ( ( 𝐹 ∘f ( +g ‘ 𝑅 ) 𝐺 ) ‘ 𝑐 ) ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
14 |
|
eqid |
⊢ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } = { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } |
15 |
1 13 5 14 7
|
mplelf |
⊢ ( 𝜑 → 𝐹 : { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
16 |
15
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → 𝐹 Fn { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) |
18 |
1 13 5 14 8
|
mplelf |
⊢ ( 𝜑 → 𝐺 : { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
19 |
18
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → 𝐺 Fn { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) |
21 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
22 |
21
|
rabex |
⊢ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∈ V |
23 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∈ V ) |
24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) |
25 |
|
fnfvof |
⊢ ( ( ( 𝐹 Fn { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ 𝐺 Fn { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ ( { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∈ V ∧ 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ) → ( ( 𝐹 ∘f ( +g ‘ 𝑅 ) 𝐺 ) ‘ 𝑐 ) = ( ( 𝐹 ‘ 𝑐 ) ( +g ‘ 𝑅 ) ( 𝐺 ‘ 𝑐 ) ) ) |
26 |
17 20 23 24 25
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝐹 ∘f ( +g ‘ 𝑅 ) 𝐺 ) ‘ 𝑐 ) = ( ( 𝐹 ‘ 𝑐 ) ( +g ‘ 𝑅 ) ( 𝐺 ‘ 𝑐 ) ) ) |
27 |
12 26
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝐹 + 𝐺 ) ‘ 𝑐 ) = ( ( 𝐹 ‘ 𝑐 ) ( +g ‘ 𝑅 ) ( 𝐺 ‘ 𝑐 ) ) ) |
28 |
27
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( ( 𝐹 + 𝐺 ) ‘ 𝑐 ) = ( ( 𝐹 ‘ 𝑐 ) ( +g ‘ 𝑅 ) ( 𝐺 ‘ 𝑐 ) ) ) |
29 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
30 |
|
eqid |
⊢ ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) = ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) |
31 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → 𝐹 ∈ 𝐵 ) |
32 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) |
33 |
2 1 5
|
mdegxrcl |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ) |
34 |
7 33
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ) |
36 |
2 1 5
|
mdegxrcl |
⊢ ( 𝐺 ∈ 𝐵 → ( 𝐷 ‘ 𝐺 ) ∈ ℝ* ) |
37 |
8 36
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) ∈ ℝ* ) |
38 |
37 34
|
ifcld |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ∈ ℝ* ) |
39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ∈ ℝ* ) |
40 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
41 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
42 |
40 41
|
sstri |
⊢ ℕ0 ⊆ ℝ* |
43 |
14 30
|
tdeglem1 |
⊢ ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) : { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ⟶ ℕ0 |
44 |
43
|
a1i |
⊢ ( 𝜑 → ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) : { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ⟶ ℕ0 ) |
45 |
44
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ∈ ℕ0 ) |
46 |
42 45
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ∈ ℝ* ) |
47 |
35 39 46
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ∈ ℝ* ∧ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ∈ ℝ* ) ) |
48 |
47
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ∈ ℝ* ∧ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ∈ ℝ* ) ) |
49 |
|
xrmax1 |
⊢ ( ( ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ∧ ( 𝐷 ‘ 𝐺 ) ∈ ℝ* ) → ( 𝐷 ‘ 𝐹 ) ≤ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ) |
50 |
34 37 49
|
syl2anc |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ≤ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ) |
51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( 𝐷 ‘ 𝐹 ) ≤ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ) |
52 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) |
53 |
51 52
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( ( 𝐷 ‘ 𝐹 ) ≤ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) |
54 |
|
xrlelttr |
⊢ ( ( ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ∈ ℝ* ∧ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ∈ ℝ* ) → ( ( ( 𝐷 ‘ 𝐹 ) ≤ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) → ( 𝐷 ‘ 𝐹 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) |
55 |
48 53 54
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( 𝐷 ‘ 𝐹 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) |
56 |
2 1 5 29 14 30 31 32 55
|
mdeglt |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( 𝐹 ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
57 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → 𝐺 ∈ 𝐵 ) |
58 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝐷 ‘ 𝐺 ) ∈ ℝ* ) |
59 |
58 39 46
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝐷 ‘ 𝐺 ) ∈ ℝ* ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ∈ ℝ* ∧ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ∈ ℝ* ) ) |
60 |
59
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( ( 𝐷 ‘ 𝐺 ) ∈ ℝ* ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ∈ ℝ* ∧ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ∈ ℝ* ) ) |
61 |
|
xrmax2 |
⊢ ( ( ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ∧ ( 𝐷 ‘ 𝐺 ) ∈ ℝ* ) → ( 𝐷 ‘ 𝐺 ) ≤ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ) |
62 |
34 37 61
|
syl2anc |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) ≤ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ) |
63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( 𝐷 ‘ 𝐺 ) ≤ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ) |
64 |
63 52
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( ( 𝐷 ‘ 𝐺 ) ≤ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) |
65 |
|
xrlelttr |
⊢ ( ( ( 𝐷 ‘ 𝐺 ) ∈ ℝ* ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ∈ ℝ* ∧ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ∈ ℝ* ) → ( ( ( 𝐷 ‘ 𝐺 ) ≤ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) → ( 𝐷 ‘ 𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) |
66 |
60 64 65
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( 𝐷 ‘ 𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) |
67 |
2 1 5 29 14 30 57 32 66
|
mdeglt |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( 𝐺 ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
68 |
56 67
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( ( 𝐹 ‘ 𝑐 ) ( +g ‘ 𝑅 ) ( 𝐺 ‘ 𝑐 ) ) = ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
69 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
70 |
4 69
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
71 |
13 29
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
72 |
4 71
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
73 |
13 9 29
|
grplid |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
74 |
70 72 73
|
syl2anc |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
76 |
68 75
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( ( 𝐹 ‘ 𝑐 ) ( +g ‘ 𝑅 ) ( 𝐺 ‘ 𝑐 ) ) = ( 0g ‘ 𝑅 ) ) |
77 |
28 76
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( ( 𝐹 + 𝐺 ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
78 |
77
|
expr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) → ( ( 𝐹 + 𝐺 ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
79 |
78
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ( if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) → ( ( 𝐹 + 𝐺 ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
80 |
1
|
mplring |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝑌 ∈ Ring ) |
81 |
3 4 80
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ Ring ) |
82 |
5 6
|
ringacl |
⊢ ( ( 𝑌 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 + 𝐺 ) ∈ 𝐵 ) |
83 |
81 7 8 82
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 + 𝐺 ) ∈ 𝐵 ) |
84 |
2 1 5 29 14 30
|
mdegleb |
⊢ ( ( ( 𝐹 + 𝐺 ) ∈ 𝐵 ∧ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ∈ ℝ* ) → ( ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ≤ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ↔ ∀ 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ( if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) → ( ( 𝐹 + 𝐺 ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) |
85 |
83 38 84
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ≤ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ↔ ∀ 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ( if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) → ( ( 𝐹 + 𝐺 ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) |
86 |
79 85
|
mpbird |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ≤ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ) |