Step |
Hyp |
Ref |
Expression |
1 |
|
mdegaddle.y |
⊢ 𝑌 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
mdegaddle.d |
⊢ 𝐷 = ( 𝐼 mDeg 𝑅 ) |
3 |
|
mdegaddle.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
4 |
|
mdegaddle.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
mdegle0.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
6 |
|
mdegle0.a |
⊢ 𝐴 = ( algSc ‘ 𝑌 ) |
7 |
|
mdegle0.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
8 |
|
0xr |
⊢ 0 ∈ ℝ* |
9 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
10 |
|
eqid |
⊢ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } = { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } |
11 |
|
eqid |
⊢ ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) = ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) |
12 |
2 1 5 9 10 11
|
mdegleb |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 0 ∈ ℝ* ) → ( ( 𝐷 ‘ 𝐹 ) ≤ 0 ↔ ∀ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ( 0 < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) |
13 |
7 8 12
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐹 ) ≤ 0 ↔ ∀ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ( 0 < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) |
14 |
10 11
|
tdeglem1 |
⊢ ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) : { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ⟶ ℕ0 |
15 |
14
|
a1i |
⊢ ( 𝜑 → ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) : { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ⟶ ℕ0 ) |
16 |
15
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ∈ ℕ0 ) |
17 |
|
nn0re |
⊢ ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ∈ ℕ0 → ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ∈ ℝ ) |
18 |
|
nn0ge0 |
⊢ ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ∈ ℕ0 → 0 ≤ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ) |
19 |
17 18
|
jca |
⊢ ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ∈ ℕ0 → ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ) ) |
20 |
|
ne0gt0 |
⊢ ( ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ) → ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ≠ 0 ↔ 0 < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ) ) |
21 |
16 19 20
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ≠ 0 ↔ 0 < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ) ) |
22 |
10 11
|
tdeglem4 |
⊢ ( 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } → ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 𝐼 × { 0 } ) ) ) |
23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 𝐼 × { 0 } ) ) ) |
24 |
23
|
necon3abid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ≠ 0 ↔ ¬ 𝑥 = ( 𝐼 × { 0 } ) ) ) |
25 |
21 24
|
bitr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 0 < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ↔ ¬ 𝑥 = ( 𝐼 × { 0 } ) ) ) |
26 |
25
|
imbi1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 0 < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ↔ ( ¬ 𝑥 = ( 𝐼 × { 0 } ) → ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) |
27 |
|
eqeq2 |
⊢ ( ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) = if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) , ( 0g ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) ↔ ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) , ( 0g ‘ 𝑅 ) ) ) ) |
28 |
27
|
bibi1d |
⊢ ( ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) = if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) , ( 0g ‘ 𝑅 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) ↔ ( ¬ 𝑥 = ( 𝐼 × { 0 } ) → ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) , ( 0g ‘ 𝑅 ) ) ↔ ( ¬ 𝑥 = ( 𝐼 × { 0 } ) → ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ) |
29 |
|
eqeq2 |
⊢ ( ( 0g ‘ 𝑅 ) = if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) , ( 0g ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) , ( 0g ‘ 𝑅 ) ) ) ) |
30 |
29
|
bibi1d |
⊢ ( ( 0g ‘ 𝑅 ) = if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) , ( 0g ‘ 𝑅 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ↔ ( ¬ 𝑥 = ( 𝐼 × { 0 } ) → ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) , ( 0g ‘ 𝑅 ) ) ↔ ( ¬ 𝑥 = ( 𝐼 × { 0 } ) → ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ) |
31 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐼 × { 0 } ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) ) |
32 |
|
pm2.24 |
⊢ ( 𝑥 = ( 𝐼 × { 0 } ) → ( ¬ 𝑥 = ( 𝐼 × { 0 } ) → ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) |
33 |
31 32
|
2thd |
⊢ ( 𝑥 = ( 𝐼 × { 0 } ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) ↔ ( ¬ 𝑥 = ( 𝐼 × { 0 } ) → ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) |
34 |
33
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = ( 𝐼 × { 0 } ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) ↔ ( ¬ 𝑥 = ( 𝐼 × { 0 } ) → ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) |
35 |
|
biimt |
⊢ ( ¬ 𝑥 = ( 𝐼 × { 0 } ) → ( ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ↔ ( ¬ 𝑥 = ( 𝐼 × { 0 } ) → ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) |
36 |
35
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑥 = ( 𝐼 × { 0 } ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ↔ ( ¬ 𝑥 = ( 𝐼 × { 0 } ) → ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) |
37 |
28 30 34 36
|
ifbothda |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) , ( 0g ‘ 𝑅 ) ) ↔ ( ¬ 𝑥 = ( 𝐼 × { 0 } ) → ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) , ( 0g ‘ 𝑅 ) ) ↔ ( ¬ 𝑥 = ( 𝐼 × { 0 } ) → ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) |
39 |
26 38
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 0 < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ↔ ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) , ( 0g ‘ 𝑅 ) ) ) ) |
40 |
39
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ( 0 < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ↔ ∀ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) , ( 0g ‘ 𝑅 ) ) ) ) |
41 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
42 |
1 41 5 10 7
|
mplelf |
⊢ ( 𝜑 → 𝐹 : { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
43 |
42
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
44 |
10
|
psrbag0 |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 × { 0 } ) ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) |
45 |
3 44
|
syl |
⊢ ( 𝜑 → ( 𝐼 × { 0 } ) ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) |
46 |
42 45
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) ∈ ( Base ‘ 𝑅 ) ) |
47 |
1 10 9 41 6 3 4 46
|
mplascl |
⊢ ( 𝜑 → ( 𝐴 ‘ ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) ) = ( 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) , ( 0g ‘ 𝑅 ) ) ) ) |
48 |
43 47
|
eqeq12d |
⊢ ( 𝜑 → ( 𝐹 = ( 𝐴 ‘ ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) ) ↔ ( 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
49 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
50 |
49
|
rgenw |
⊢ ∀ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ( 𝐹 ‘ 𝑥 ) ∈ V |
51 |
|
mpteqb |
⊢ ( ∀ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ( 𝐹 ‘ 𝑥 ) ∈ V → ( ( 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) , ( 0g ‘ 𝑅 ) ) ) ↔ ∀ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) , ( 0g ‘ 𝑅 ) ) ) ) |
52 |
50 51
|
mp1i |
⊢ ( 𝜑 → ( ( 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) , ( 0g ‘ 𝑅 ) ) ) ↔ ∀ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) , ( 0g ‘ 𝑅 ) ) ) ) |
53 |
48 52
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 = ( 𝐴 ‘ ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) ) ↔ ∀ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) , ( 0g ‘ 𝑅 ) ) ) ) |
54 |
40 53
|
bitr4d |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ( 0 < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ↔ 𝐹 = ( 𝐴 ‘ ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) ) ) ) |
55 |
13 54
|
bitrd |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐹 ) ≤ 0 ↔ 𝐹 = ( 𝐴 ‘ ( 𝐹 ‘ ( 𝐼 × { 0 } ) ) ) ) ) |