Step |
Hyp |
Ref |
Expression |
1 |
|
mdegval.d |
⊢ 𝐷 = ( 𝐼 mDeg 𝑅 ) |
2 |
|
mdegval.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
3 |
|
mdegval.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
mdegval.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
mdegval.a |
⊢ 𝐴 = { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } |
6 |
|
mdegval.h |
⊢ 𝐻 = ( ℎ ∈ 𝐴 ↦ ( ℂfld Σg ℎ ) ) |
7 |
|
mdeglt.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
8 |
|
medglt.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
9 |
|
mdeglt.lt |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) < ( 𝐻 ‘ 𝑋 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑋 ) ) |
11 |
10
|
breq2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐷 ‘ 𝐹 ) < ( 𝐻 ‘ 𝑥 ) ↔ ( 𝐷 ‘ 𝐹 ) < ( 𝐻 ‘ 𝑋 ) ) ) |
12 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ ( 𝐹 ‘ 𝑋 ) = 0 ) ) |
13 |
11 12
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝐷 ‘ 𝐹 ) < ( 𝐻 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = 0 ) ↔ ( ( 𝐷 ‘ 𝐹 ) < ( 𝐻 ‘ 𝑋 ) → ( 𝐹 ‘ 𝑋 ) = 0 ) ) ) |
14 |
1 2 3 4 5 6
|
mdegval |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐷 ‘ 𝐹 ) = sup ( ( 𝐻 “ ( 𝐹 supp 0 ) ) , ℝ* , < ) ) |
15 |
7 14
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) = sup ( ( 𝐻 “ ( 𝐹 supp 0 ) ) , ℝ* , < ) ) |
16 |
|
imassrn |
⊢ ( 𝐻 “ ( 𝐹 supp 0 ) ) ⊆ ran 𝐻 |
17 |
5 6
|
tdeglem1 |
⊢ 𝐻 : 𝐴 ⟶ ℕ0 |
18 |
|
frn |
⊢ ( 𝐻 : 𝐴 ⟶ ℕ0 → ran 𝐻 ⊆ ℕ0 ) |
19 |
17 18
|
mp1i |
⊢ ( 𝜑 → ran 𝐻 ⊆ ℕ0 ) |
20 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
21 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
22 |
20 21
|
sstri |
⊢ ℕ0 ⊆ ℝ* |
23 |
19 22
|
sstrdi |
⊢ ( 𝜑 → ran 𝐻 ⊆ ℝ* ) |
24 |
16 23
|
sstrid |
⊢ ( 𝜑 → ( 𝐻 “ ( 𝐹 supp 0 ) ) ⊆ ℝ* ) |
25 |
|
supxrcl |
⊢ ( ( 𝐻 “ ( 𝐹 supp 0 ) ) ⊆ ℝ* → sup ( ( 𝐻 “ ( 𝐹 supp 0 ) ) , ℝ* , < ) ∈ ℝ* ) |
26 |
24 25
|
syl |
⊢ ( 𝜑 → sup ( ( 𝐻 “ ( 𝐹 supp 0 ) ) , ℝ* , < ) ∈ ℝ* ) |
27 |
15 26
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ) |
28 |
27
|
xrleidd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐹 ) ) |
29 |
1 2 3 4 5 6
|
mdegleb |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ) → ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐹 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐷 ‘ 𝐹 ) < ( 𝐻 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = 0 ) ) ) |
30 |
7 27 29
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐹 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐷 ‘ 𝐹 ) < ( 𝐻 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = 0 ) ) ) |
31 |
28 30
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( ( 𝐷 ‘ 𝐹 ) < ( 𝐻 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
32 |
13 31 8
|
rspcdva |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐹 ) < ( 𝐻 ‘ 𝑋 ) → ( 𝐹 ‘ 𝑋 ) = 0 ) ) |
33 |
9 32
|
mpd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = 0 ) |