| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdegaddle.y |
⊢ 𝑌 = ( 𝐼 mPoly 𝑅 ) |
| 2 |
|
mdegaddle.d |
⊢ 𝐷 = ( 𝐼 mDeg 𝑅 ) |
| 3 |
|
mdegaddle.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 4 |
|
mdegaddle.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 5 |
|
mdegmulle2.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
| 6 |
|
mdegmulle2.t |
⊢ · = ( .r ‘ 𝑌 ) |
| 7 |
|
mdegmulle2.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
| 8 |
|
mdegmulle2.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
| 9 |
|
mdegmulle2.j1 |
⊢ ( 𝜑 → 𝐽 ∈ ℕ0 ) |
| 10 |
|
mdegmulle2.k1 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 11 |
|
mdegmulle2.j2 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ≤ 𝐽 ) |
| 12 |
|
mdegmulle2.k2 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) ≤ 𝐾 ) |
| 13 |
|
eqid |
⊢ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } = { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } |
| 14 |
|
eqid |
⊢ ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) = ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) |
| 15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
mdegmullem |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) ≤ ( 𝐽 + 𝐾 ) ) |