Metamath Proof Explorer


Theorem mdegmulle2

Description: The multivariate degree of a product of polynomials is at most the sum of the degrees of the polynomials. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses mdegaddle.y 𝑌 = ( 𝐼 mPoly 𝑅 )
mdegaddle.d 𝐷 = ( 𝐼 mDeg 𝑅 )
mdegaddle.i ( 𝜑𝐼𝑉 )
mdegaddle.r ( 𝜑𝑅 ∈ Ring )
mdegmulle2.b 𝐵 = ( Base ‘ 𝑌 )
mdegmulle2.t · = ( .r𝑌 )
mdegmulle2.f ( 𝜑𝐹𝐵 )
mdegmulle2.g ( 𝜑𝐺𝐵 )
mdegmulle2.j1 ( 𝜑𝐽 ∈ ℕ0 )
mdegmulle2.k1 ( 𝜑𝐾 ∈ ℕ0 )
mdegmulle2.j2 ( 𝜑 → ( 𝐷𝐹 ) ≤ 𝐽 )
mdegmulle2.k2 ( 𝜑 → ( 𝐷𝐺 ) ≤ 𝐾 )
Assertion mdegmulle2 ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) ≤ ( 𝐽 + 𝐾 ) )

Proof

Step Hyp Ref Expression
1 mdegaddle.y 𝑌 = ( 𝐼 mPoly 𝑅 )
2 mdegaddle.d 𝐷 = ( 𝐼 mDeg 𝑅 )
3 mdegaddle.i ( 𝜑𝐼𝑉 )
4 mdegaddle.r ( 𝜑𝑅 ∈ Ring )
5 mdegmulle2.b 𝐵 = ( Base ‘ 𝑌 )
6 mdegmulle2.t · = ( .r𝑌 )
7 mdegmulle2.f ( 𝜑𝐹𝐵 )
8 mdegmulle2.g ( 𝜑𝐺𝐵 )
9 mdegmulle2.j1 ( 𝜑𝐽 ∈ ℕ0 )
10 mdegmulle2.k1 ( 𝜑𝐾 ∈ ℕ0 )
11 mdegmulle2.j2 ( 𝜑 → ( 𝐷𝐹 ) ≤ 𝐽 )
12 mdegmulle2.k2 ( 𝜑 → ( 𝐷𝐺 ) ≤ 𝐾 )
13 eqid { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } = { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin }
14 eqid ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) = ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) )
15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 mdegmullem ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) ≤ ( 𝐽 + 𝐾 ) )