Metamath Proof Explorer


Theorem mdegnn0cl

Description: Degree of a nonzero polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses mdeg0.d 𝐷 = ( 𝐼 mDeg 𝑅 )
mdeg0.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mdeg0.z 0 = ( 0g𝑃 )
mdegnn0cl.b 𝐵 = ( Base ‘ 𝑃 )
Assertion mdegnn0cl ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → ( 𝐷𝐹 ) ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 mdeg0.d 𝐷 = ( 𝐼 mDeg 𝑅 )
2 mdeg0.p 𝑃 = ( 𝐼 mPoly 𝑅 )
3 mdeg0.z 0 = ( 0g𝑃 )
4 mdegnn0cl.b 𝐵 = ( Base ‘ 𝑃 )
5 eqid ( 0g𝑅 ) = ( 0g𝑅 )
6 eqid { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin } = { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin }
7 eqid ( ∈ { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg ) ) = ( ∈ { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg ) )
8 1 2 4 5 6 7 3 mdegldg ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → ∃ 𝑥 ∈ { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin } ( ( 𝐹𝑥 ) ≠ ( 0g𝑅 ) ∧ ( ( ∈ { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg ) ) ‘ 𝑥 ) = ( 𝐷𝐹 ) ) )
9 6 7 tdeglem1 ( ∈ { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg ) ) : { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin } ⟶ ℕ0
10 9 a1i ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → ( ∈ { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg ) ) : { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin } ⟶ ℕ0 )
11 10 ffvelrnda ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) ∧ 𝑥 ∈ { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin } ) → ( ( ∈ { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg ) ) ‘ 𝑥 ) ∈ ℕ0 )
12 eleq1 ( ( ( ∈ { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg ) ) ‘ 𝑥 ) = ( 𝐷𝐹 ) → ( ( ( ∈ { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg ) ) ‘ 𝑥 ) ∈ ℕ0 ↔ ( 𝐷𝐹 ) ∈ ℕ0 ) )
13 11 12 syl5ibcom ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) ∧ 𝑥 ∈ { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin } ) → ( ( ( ∈ { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg ) ) ‘ 𝑥 ) = ( 𝐷𝐹 ) → ( 𝐷𝐹 ) ∈ ℕ0 ) )
14 13 adantld ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) ∧ 𝑥 ∈ { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin } ) → ( ( ( 𝐹𝑥 ) ≠ ( 0g𝑅 ) ∧ ( ( ∈ { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg ) ) ‘ 𝑥 ) = ( 𝐷𝐹 ) ) → ( 𝐷𝐹 ) ∈ ℕ0 ) )
15 14 rexlimdva ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → ( ∃ 𝑥 ∈ { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin } ( ( 𝐹𝑥 ) ≠ ( 0g𝑅 ) ∧ ( ( ∈ { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg ) ) ‘ 𝑥 ) = ( 𝐷𝐹 ) ) → ( 𝐷𝐹 ) ∈ ℕ0 ) )
16 8 15 mpd ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → ( 𝐷𝐹 ) ∈ ℕ0 )