Step |
Hyp |
Ref |
Expression |
1 |
|
mdeg0.d |
⊢ 𝐷 = ( 𝐼 mDeg 𝑅 ) |
2 |
|
mdeg0.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
3 |
|
mdeg0.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
4 |
|
mdegnn0cl.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
6 |
|
eqid |
⊢ { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } = { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } |
7 |
|
eqid |
⊢ ( ℎ ∈ { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg ℎ ) ) = ( ℎ ∈ { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg ℎ ) ) |
8 |
1 2 4 5 6 7 3
|
mdegldg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ∃ 𝑥 ∈ { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } ( ( 𝐹 ‘ 𝑥 ) ≠ ( 0g ‘ 𝑅 ) ∧ ( ( ℎ ∈ { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg ℎ ) ) ‘ 𝑥 ) = ( 𝐷 ‘ 𝐹 ) ) ) |
9 |
6 7
|
tdeglem1 |
⊢ ( ℎ ∈ { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg ℎ ) ) : { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } ⟶ ℕ0 |
10 |
9
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ( ℎ ∈ { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg ℎ ) ) : { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } ⟶ ℕ0 ) |
11 |
10
|
ffvelrnda |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) ∧ 𝑥 ∈ { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } ) → ( ( ℎ ∈ { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg ℎ ) ) ‘ 𝑥 ) ∈ ℕ0 ) |
12 |
|
eleq1 |
⊢ ( ( ( ℎ ∈ { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg ℎ ) ) ‘ 𝑥 ) = ( 𝐷 ‘ 𝐹 ) → ( ( ( ℎ ∈ { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg ℎ ) ) ‘ 𝑥 ) ∈ ℕ0 ↔ ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) ) |
13 |
11 12
|
syl5ibcom |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) ∧ 𝑥 ∈ { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } ) → ( ( ( ℎ ∈ { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg ℎ ) ) ‘ 𝑥 ) = ( 𝐷 ‘ 𝐹 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) ) |
14 |
13
|
adantld |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) ∧ 𝑥 ∈ { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } ) → ( ( ( 𝐹 ‘ 𝑥 ) ≠ ( 0g ‘ 𝑅 ) ∧ ( ( ℎ ∈ { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg ℎ ) ) ‘ 𝑥 ) = ( 𝐷 ‘ 𝐹 ) ) → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) ) |
15 |
14
|
rexlimdva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ( ∃ 𝑥 ∈ { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } ( ( 𝐹 ‘ 𝑥 ) ≠ ( 0g ‘ 𝑅 ) ∧ ( ( ℎ ∈ { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg ℎ ) ) ‘ 𝑥 ) = ( 𝐷 ‘ 𝐹 ) ) → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) ) |
16 |
8 15
|
mpd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |