Step |
Hyp |
Ref |
Expression |
1 |
|
mdegpropd.b1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
2 |
|
mdegpropd.b2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑆 ) ) |
3 |
|
mdegpropd.p |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) |
4 |
1 2 3
|
mplbaspropd |
⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) ) |
5 |
1 2 3
|
grpidpropd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑆 ) ) |
6 |
5
|
oveq2d |
⊢ ( 𝜑 → ( 𝑐 supp ( 0g ‘ 𝑅 ) ) = ( 𝑐 supp ( 0g ‘ 𝑆 ) ) ) |
7 |
6
|
imaeq2d |
⊢ ( 𝜑 → ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝑐 supp ( 0g ‘ 𝑅 ) ) ) = ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝑐 supp ( 0g ‘ 𝑆 ) ) ) ) |
8 |
7
|
supeq1d |
⊢ ( 𝜑 → sup ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝑐 supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) = sup ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝑐 supp ( 0g ‘ 𝑆 ) ) ) , ℝ* , < ) ) |
9 |
4 8
|
mpteq12dv |
⊢ ( 𝜑 → ( 𝑐 ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ↦ sup ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝑐 supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) ) = ( 𝑐 ∈ ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) ↦ sup ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝑐 supp ( 0g ‘ 𝑆 ) ) ) , ℝ* , < ) ) ) |
10 |
|
eqid |
⊢ ( 𝐼 mDeg 𝑅 ) = ( 𝐼 mDeg 𝑅 ) |
11 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑅 ) |
12 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) |
13 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
14 |
|
eqid |
⊢ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } = { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } |
15 |
|
eqid |
⊢ ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) = ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) |
16 |
10 11 12 13 14 15
|
mdegfval |
⊢ ( 𝐼 mDeg 𝑅 ) = ( 𝑐 ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ↦ sup ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝑐 supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) ) |
17 |
|
eqid |
⊢ ( 𝐼 mDeg 𝑆 ) = ( 𝐼 mDeg 𝑆 ) |
18 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑆 ) = ( 𝐼 mPoly 𝑆 ) |
19 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) |
20 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
21 |
17 18 19 20 14 15
|
mdegfval |
⊢ ( 𝐼 mDeg 𝑆 ) = ( 𝑐 ∈ ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) ↦ sup ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝑐 supp ( 0g ‘ 𝑆 ) ) ) , ℝ* , < ) ) |
22 |
9 16 21
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝐼 mDeg 𝑅 ) = ( 𝐼 mDeg 𝑆 ) ) |