Metamath Proof Explorer


Theorem mdegvsca

Description: The degree of a scalar multiple of a polynomial is exactly the degree of the original polynomial when the multiple is a nonzero-divisor. (Contributed by Stefan O'Rear, 28-Mar-2015) (Proof shortened by AV, 27-Jul-2019)

Ref Expression
Hypotheses mdegaddle.y 𝑌 = ( 𝐼 mPoly 𝑅 )
mdegaddle.d 𝐷 = ( 𝐼 mDeg 𝑅 )
mdegaddle.i ( 𝜑𝐼𝑉 )
mdegaddle.r ( 𝜑𝑅 ∈ Ring )
mdegvsca.b 𝐵 = ( Base ‘ 𝑌 )
mdegvsca.e 𝐸 = ( RLReg ‘ 𝑅 )
mdegvsca.p · = ( ·𝑠𝑌 )
mdegvsca.f ( 𝜑𝐹𝐸 )
mdegvsca.g ( 𝜑𝐺𝐵 )
Assertion mdegvsca ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) = ( 𝐷𝐺 ) )

Proof

Step Hyp Ref Expression
1 mdegaddle.y 𝑌 = ( 𝐼 mPoly 𝑅 )
2 mdegaddle.d 𝐷 = ( 𝐼 mDeg 𝑅 )
3 mdegaddle.i ( 𝜑𝐼𝑉 )
4 mdegaddle.r ( 𝜑𝑅 ∈ Ring )
5 mdegvsca.b 𝐵 = ( Base ‘ 𝑌 )
6 mdegvsca.e 𝐸 = ( RLReg ‘ 𝑅 )
7 mdegvsca.p · = ( ·𝑠𝑌 )
8 mdegvsca.f ( 𝜑𝐹𝐸 )
9 mdegvsca.g ( 𝜑𝐺𝐵 )
10 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
11 eqid ( .r𝑅 ) = ( .r𝑅 )
12 eqid { 𝑥 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑥 “ ℕ ) ∈ Fin } = { 𝑥 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑥 “ ℕ ) ∈ Fin }
13 6 10 rrgss 𝐸 ⊆ ( Base ‘ 𝑅 )
14 13 8 sselid ( 𝜑𝐹 ∈ ( Base ‘ 𝑅 ) )
15 1 7 10 5 11 12 14 9 mplvsca ( 𝜑 → ( 𝐹 · 𝐺 ) = ( ( { 𝑥 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑥 “ ℕ ) ∈ Fin } × { 𝐹 } ) ∘f ( .r𝑅 ) 𝐺 ) )
16 15 oveq1d ( 𝜑 → ( ( 𝐹 · 𝐺 ) supp ( 0g𝑅 ) ) = ( ( ( { 𝑥 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑥 “ ℕ ) ∈ Fin } × { 𝐹 } ) ∘f ( .r𝑅 ) 𝐺 ) supp ( 0g𝑅 ) ) )
17 eqid ( 0g𝑅 ) = ( 0g𝑅 )
18 ovex ( ℕ0m 𝐼 ) ∈ V
19 18 rabex { 𝑥 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑥 “ ℕ ) ∈ Fin } ∈ V
20 19 a1i ( 𝜑 → { 𝑥 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑥 “ ℕ ) ∈ Fin } ∈ V )
21 1 10 5 12 9 mplelf ( 𝜑𝐺 : { 𝑥 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑥 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
22 6 10 11 17 20 4 8 21 rrgsupp ( 𝜑 → ( ( ( { 𝑥 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑥 “ ℕ ) ∈ Fin } × { 𝐹 } ) ∘f ( .r𝑅 ) 𝐺 ) supp ( 0g𝑅 ) ) = ( 𝐺 supp ( 0g𝑅 ) ) )
23 16 22 eqtrd ( 𝜑 → ( ( 𝐹 · 𝐺 ) supp ( 0g𝑅 ) ) = ( 𝐺 supp ( 0g𝑅 ) ) )
24 23 imaeq2d ( 𝜑 → ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( ( 𝐹 · 𝐺 ) supp ( 0g𝑅 ) ) ) = ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( 𝐺 supp ( 0g𝑅 ) ) ) )
25 24 supeq1d ( 𝜑 → sup ( ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( ( 𝐹 · 𝐺 ) supp ( 0g𝑅 ) ) ) , ℝ* , < ) = sup ( ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( 𝐺 supp ( 0g𝑅 ) ) ) , ℝ* , < ) )
26 1 mpllmod ( ( 𝐼𝑉𝑅 ∈ Ring ) → 𝑌 ∈ LMod )
27 3 4 26 syl2anc ( 𝜑𝑌 ∈ LMod )
28 1 3 4 mplsca ( 𝜑𝑅 = ( Scalar ‘ 𝑌 ) )
29 28 fveq2d ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) )
30 14 29 eleqtrd ( 𝜑𝐹 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) )
31 eqid ( Scalar ‘ 𝑌 ) = ( Scalar ‘ 𝑌 )
32 eqid ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ ( Scalar ‘ 𝑌 ) )
33 5 31 7 32 lmodvscl ( ( 𝑌 ∈ LMod ∧ 𝐹 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝐺𝐵 ) → ( 𝐹 · 𝐺 ) ∈ 𝐵 )
34 27 30 9 33 syl3anc ( 𝜑 → ( 𝐹 · 𝐺 ) ∈ 𝐵 )
35 eqid ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) = ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) )
36 2 1 5 17 12 35 mdegval ( ( 𝐹 · 𝐺 ) ∈ 𝐵 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) = sup ( ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( ( 𝐹 · 𝐺 ) supp ( 0g𝑅 ) ) ) , ℝ* , < ) )
37 34 36 syl ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) = sup ( ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( ( 𝐹 · 𝐺 ) supp ( 0g𝑅 ) ) ) , ℝ* , < ) )
38 2 1 5 17 12 35 mdegval ( 𝐺𝐵 → ( 𝐷𝐺 ) = sup ( ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( 𝐺 supp ( 0g𝑅 ) ) ) , ℝ* , < ) )
39 9 38 syl ( 𝜑 → ( 𝐷𝐺 ) = sup ( ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( 𝐺 supp ( 0g𝑅 ) ) ) , ℝ* , < ) )
40 25 37 39 3eqtr4d ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) = ( 𝐷𝐺 ) )