Step |
Hyp |
Ref |
Expression |
1 |
|
mdegaddle.y |
⊢ 𝑌 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
mdegaddle.d |
⊢ 𝐷 = ( 𝐼 mDeg 𝑅 ) |
3 |
|
mdegaddle.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
4 |
|
mdegaddle.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
mdegvsca.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
6 |
|
mdegvsca.e |
⊢ 𝐸 = ( RLReg ‘ 𝑅 ) |
7 |
|
mdegvsca.p |
⊢ · = ( ·𝑠 ‘ 𝑌 ) |
8 |
|
mdegvsca.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐸 ) |
9 |
|
mdegvsca.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
12 |
|
eqid |
⊢ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } = { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } |
13 |
6 10
|
rrgss |
⊢ 𝐸 ⊆ ( Base ‘ 𝑅 ) |
14 |
13 8
|
sselid |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ 𝑅 ) ) |
15 |
1 7 10 5 11 12 14 9
|
mplvsca |
⊢ ( 𝜑 → ( 𝐹 · 𝐺 ) = ( ( { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } × { 𝐹 } ) ∘f ( .r ‘ 𝑅 ) 𝐺 ) ) |
16 |
15
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐹 · 𝐺 ) supp ( 0g ‘ 𝑅 ) ) = ( ( ( { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } × { 𝐹 } ) ∘f ( .r ‘ 𝑅 ) 𝐺 ) supp ( 0g ‘ 𝑅 ) ) ) |
17 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
18 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
19 |
18
|
rabex |
⊢ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ∈ V |
20 |
19
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ∈ V ) |
21 |
1 10 5 12 9
|
mplelf |
⊢ ( 𝜑 → 𝐺 : { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
22 |
6 10 11 17 20 4 8 21
|
rrgsupp |
⊢ ( 𝜑 → ( ( ( { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } × { 𝐹 } ) ∘f ( .r ‘ 𝑅 ) 𝐺 ) supp ( 0g ‘ 𝑅 ) ) = ( 𝐺 supp ( 0g ‘ 𝑅 ) ) ) |
23 |
16 22
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 · 𝐺 ) supp ( 0g ‘ 𝑅 ) ) = ( 𝐺 supp ( 0g ‘ 𝑅 ) ) ) |
24 |
23
|
imaeq2d |
⊢ ( 𝜑 → ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( ( 𝐹 · 𝐺 ) supp ( 0g ‘ 𝑅 ) ) ) = ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( 𝐺 supp ( 0g ‘ 𝑅 ) ) ) ) |
25 |
24
|
supeq1d |
⊢ ( 𝜑 → sup ( ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( ( 𝐹 · 𝐺 ) supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) = sup ( ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( 𝐺 supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) ) |
26 |
1
|
mpllmod |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝑌 ∈ LMod ) |
27 |
3 4 26
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ LMod ) |
28 |
1 3 4
|
mplsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑌 ) ) |
29 |
28
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
30 |
14 29
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
31 |
|
eqid |
⊢ ( Scalar ‘ 𝑌 ) = ( Scalar ‘ 𝑌 ) |
32 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) |
33 |
5 31 7 32
|
lmodvscl |
⊢ ( ( 𝑌 ∈ LMod ∧ 𝐹 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 · 𝐺 ) ∈ 𝐵 ) |
34 |
27 30 9 33
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 · 𝐺 ) ∈ 𝐵 ) |
35 |
|
eqid |
⊢ ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) = ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) |
36 |
2 1 5 17 12 35
|
mdegval |
⊢ ( ( 𝐹 · 𝐺 ) ∈ 𝐵 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) = sup ( ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( ( 𝐹 · 𝐺 ) supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) ) |
37 |
34 36
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) = sup ( ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( ( 𝐹 · 𝐺 ) supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) ) |
38 |
2 1 5 17 12 35
|
mdegval |
⊢ ( 𝐺 ∈ 𝐵 → ( 𝐷 ‘ 𝐺 ) = sup ( ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( 𝐺 supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) ) |
39 |
9 38
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) = sup ( ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( 𝐺 supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) ) |
40 |
25 37 39
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) = ( 𝐷 ‘ 𝐺 ) ) |