Metamath Proof Explorer


Theorem mdegvscale

Description: The degree of a scalar multiple of a polynomial is at most the degree of the original polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses mdegaddle.y 𝑌 = ( 𝐼 mPoly 𝑅 )
mdegaddle.d 𝐷 = ( 𝐼 mDeg 𝑅 )
mdegaddle.i ( 𝜑𝐼𝑉 )
mdegaddle.r ( 𝜑𝑅 ∈ Ring )
mdegvscale.b 𝐵 = ( Base ‘ 𝑌 )
mdegvscale.k 𝐾 = ( Base ‘ 𝑅 )
mdegvscale.p · = ( ·𝑠𝑌 )
mdegvscale.f ( 𝜑𝐹𝐾 )
mdegvscale.g ( 𝜑𝐺𝐵 )
Assertion mdegvscale ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) ≤ ( 𝐷𝐺 ) )

Proof

Step Hyp Ref Expression
1 mdegaddle.y 𝑌 = ( 𝐼 mPoly 𝑅 )
2 mdegaddle.d 𝐷 = ( 𝐼 mDeg 𝑅 )
3 mdegaddle.i ( 𝜑𝐼𝑉 )
4 mdegaddle.r ( 𝜑𝑅 ∈ Ring )
5 mdegvscale.b 𝐵 = ( Base ‘ 𝑌 )
6 mdegvscale.k 𝐾 = ( Base ‘ 𝑅 )
7 mdegvscale.p · = ( ·𝑠𝑌 )
8 mdegvscale.f ( 𝜑𝐹𝐾 )
9 mdegvscale.g ( 𝜑𝐺𝐵 )
10 eqid ( .r𝑅 ) = ( .r𝑅 )
11 eqid { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } = { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin }
12 8 adantr ( ( 𝜑𝑥 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → 𝐹𝐾 )
13 9 adantr ( ( 𝜑𝑥 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → 𝐺𝐵 )
14 simpr ( ( 𝜑𝑥 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → 𝑥 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } )
15 1 7 6 5 10 11 12 13 14 mplvscaval ( ( 𝜑𝑥 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝐹 · 𝐺 ) ‘ 𝑥 ) = ( 𝐹 ( .r𝑅 ) ( 𝐺𝑥 ) ) )
16 15 adantrr ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ ( 𝐷𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ) ) → ( ( 𝐹 · 𝐺 ) ‘ 𝑥 ) = ( 𝐹 ( .r𝑅 ) ( 𝐺𝑥 ) ) )
17 eqid ( 0g𝑅 ) = ( 0g𝑅 )
18 eqid ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) = ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) )
19 9 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ ( 𝐷𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ) ) → 𝐺𝐵 )
20 simprl ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ ( 𝐷𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ) ) → 𝑥 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } )
21 simprr ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ ( 𝐷𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ) ) → ( 𝐷𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) )
22 2 1 5 17 11 18 19 20 21 mdeglt ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ ( 𝐷𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ) ) → ( 𝐺𝑥 ) = ( 0g𝑅 ) )
23 22 oveq2d ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ ( 𝐷𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ) ) → ( 𝐹 ( .r𝑅 ) ( 𝐺𝑥 ) ) = ( 𝐹 ( .r𝑅 ) ( 0g𝑅 ) ) )
24 6 10 17 ringrz ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾 ) → ( 𝐹 ( .r𝑅 ) ( 0g𝑅 ) ) = ( 0g𝑅 ) )
25 4 8 24 syl2anc ( 𝜑 → ( 𝐹 ( .r𝑅 ) ( 0g𝑅 ) ) = ( 0g𝑅 ) )
26 25 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ ( 𝐷𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ) ) → ( 𝐹 ( .r𝑅 ) ( 0g𝑅 ) ) = ( 0g𝑅 ) )
27 16 23 26 3eqtrd ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ ( 𝐷𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ) ) → ( ( 𝐹 · 𝐺 ) ‘ 𝑥 ) = ( 0g𝑅 ) )
28 27 expr ( ( 𝜑𝑥 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝐷𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) → ( ( 𝐹 · 𝐺 ) ‘ 𝑥 ) = ( 0g𝑅 ) ) )
29 28 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ( ( 𝐷𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) → ( ( 𝐹 · 𝐺 ) ‘ 𝑥 ) = ( 0g𝑅 ) ) )
30 1 mpllmod ( ( 𝐼𝑉𝑅 ∈ Ring ) → 𝑌 ∈ LMod )
31 3 4 30 syl2anc ( 𝜑𝑌 ∈ LMod )
32 1 3 4 mplsca ( 𝜑𝑅 = ( Scalar ‘ 𝑌 ) )
33 32 fveq2d ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) )
34 6 33 syl5eq ( 𝜑𝐾 = ( Base ‘ ( Scalar ‘ 𝑌 ) ) )
35 8 34 eleqtrd ( 𝜑𝐹 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) )
36 eqid ( Scalar ‘ 𝑌 ) = ( Scalar ‘ 𝑌 )
37 eqid ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ ( Scalar ‘ 𝑌 ) )
38 5 36 7 37 lmodvscl ( ( 𝑌 ∈ LMod ∧ 𝐹 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝐺𝐵 ) → ( 𝐹 · 𝐺 ) ∈ 𝐵 )
39 31 35 9 38 syl3anc ( 𝜑 → ( 𝐹 · 𝐺 ) ∈ 𝐵 )
40 2 1 5 mdegxrcl ( 𝐺𝐵 → ( 𝐷𝐺 ) ∈ ℝ* )
41 9 40 syl ( 𝜑 → ( 𝐷𝐺 ) ∈ ℝ* )
42 2 1 5 17 11 18 mdegleb ( ( ( 𝐹 · 𝐺 ) ∈ 𝐵 ∧ ( 𝐷𝐺 ) ∈ ℝ* ) → ( ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) ≤ ( 𝐷𝐺 ) ↔ ∀ 𝑥 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ( ( 𝐷𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) → ( ( 𝐹 · 𝐺 ) ‘ 𝑥 ) = ( 0g𝑅 ) ) ) )
43 39 41 42 syl2anc ( 𝜑 → ( ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) ≤ ( 𝐷𝐺 ) ↔ ∀ 𝑥 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ( ( 𝐷𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) → ( ( 𝐹 · 𝐺 ) ‘ 𝑥 ) = ( 0g𝑅 ) ) ) )
44 29 43 mpbird ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) ≤ ( 𝐷𝐺 ) )