Step |
Hyp |
Ref |
Expression |
1 |
|
mdegaddle.y |
⊢ 𝑌 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
mdegaddle.d |
⊢ 𝐷 = ( 𝐼 mDeg 𝑅 ) |
3 |
|
mdegaddle.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
4 |
|
mdegaddle.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
mdegvscale.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
6 |
|
mdegvscale.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
7 |
|
mdegvscale.p |
⊢ · = ( ·𝑠 ‘ 𝑌 ) |
8 |
|
mdegvscale.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐾 ) |
9 |
|
mdegvscale.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
10 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
11 |
|
eqid |
⊢ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } = { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } |
12 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → 𝐹 ∈ 𝐾 ) |
13 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → 𝐺 ∈ 𝐵 ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) |
15 |
1 7 6 5 10 11 12 13 14
|
mplvscaval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝐹 · 𝐺 ) ‘ 𝑥 ) = ( 𝐹 ( .r ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) ) |
16 |
15
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ ( 𝐷 ‘ 𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ) ) → ( ( 𝐹 · 𝐺 ) ‘ 𝑥 ) = ( 𝐹 ( .r ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) ) |
17 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
18 |
|
eqid |
⊢ ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) = ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) |
19 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ ( 𝐷 ‘ 𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ) ) → 𝐺 ∈ 𝐵 ) |
20 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ ( 𝐷 ‘ 𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ) ) → 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) |
21 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ ( 𝐷 ‘ 𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ) ) → ( 𝐷 ‘ 𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ) |
22 |
2 1 5 17 11 18 19 20 21
|
mdeglt |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ ( 𝐷 ‘ 𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ) ) → ( 𝐺 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) |
23 |
22
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ ( 𝐷 ‘ 𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ) ) → ( 𝐹 ( .r ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) = ( 𝐹 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
24 |
6 10 17
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ) → ( 𝐹 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
25 |
4 8 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ ( 𝐷 ‘ 𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ) ) → ( 𝐹 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
27 |
16 23 26
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ ( 𝐷 ‘ 𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) ) ) → ( ( 𝐹 · 𝐺 ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) |
28 |
27
|
expr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝐷 ‘ 𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) → ( ( 𝐹 · 𝐺 ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) |
29 |
28
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ( ( 𝐷 ‘ 𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) → ( ( 𝐹 · 𝐺 ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) |
30 |
1
|
mpllmod |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝑌 ∈ LMod ) |
31 |
3 4 30
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ LMod ) |
32 |
1 3 4
|
mplsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑌 ) ) |
33 |
32
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
34 |
6 33
|
syl5eq |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
35 |
8 34
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
36 |
|
eqid |
⊢ ( Scalar ‘ 𝑌 ) = ( Scalar ‘ 𝑌 ) |
37 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) |
38 |
5 36 7 37
|
lmodvscl |
⊢ ( ( 𝑌 ∈ LMod ∧ 𝐹 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 · 𝐺 ) ∈ 𝐵 ) |
39 |
31 35 9 38
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 · 𝐺 ) ∈ 𝐵 ) |
40 |
2 1 5
|
mdegxrcl |
⊢ ( 𝐺 ∈ 𝐵 → ( 𝐷 ‘ 𝐺 ) ∈ ℝ* ) |
41 |
9 40
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) ∈ ℝ* ) |
42 |
2 1 5 17 11 18
|
mdegleb |
⊢ ( ( ( 𝐹 · 𝐺 ) ∈ 𝐵 ∧ ( 𝐷 ‘ 𝐺 ) ∈ ℝ* ) → ( ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) ≤ ( 𝐷 ‘ 𝐺 ) ↔ ∀ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ( ( 𝐷 ‘ 𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) → ( ( 𝐹 · 𝐺 ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) |
43 |
39 41 42
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) ≤ ( 𝐷 ‘ 𝐺 ) ↔ ∀ 𝑥 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ( ( 𝐷 ‘ 𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑥 ) → ( ( 𝐹 · 𝐺 ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) |
44 |
29 43
|
mpbird |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) ≤ ( 𝐷 ‘ 𝐺 ) ) |