| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdet0.d | ⊢ 𝐷  =  ( 𝑁  maDet  𝑅 ) | 
						
							| 2 |  | mdet0.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 3 |  | mdet0.z | ⊢ 𝑍  =  ( 0g ‘ 𝐴 ) | 
						
							| 4 |  | mdet0.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 5 |  | n0 | ⊢ ( 𝑁  ≠  ∅  ↔  ∃ 𝑖 𝑖  ∈  𝑁 ) | 
						
							| 6 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 7 | 6 | anim1ci | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  𝑖  ∈  𝑁 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 9 | 2 4 | mat0op | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 0g ‘ 𝐴 )  =  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦   0  ) ) | 
						
							| 10 | 3 9 | eqtrid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑍  =  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦   0  ) ) | 
						
							| 11 | 8 10 | syl | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  𝑖  ∈  𝑁 )  →  𝑍  =  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦   0  ) ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  𝑖  ∈  𝑁 )  →  ( 𝐷 ‘ 𝑍 )  =  ( 𝐷 ‘ ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦   0  ) ) ) | 
						
							| 13 |  | ifid | ⊢ if ( 𝑥  =  𝑖 ,   0  ,   0  )  =   0 | 
						
							| 14 | 13 | eqcomi | ⊢  0   =  if ( 𝑥  =  𝑖 ,   0  ,   0  ) | 
						
							| 15 | 14 | a1i | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  𝑖  ∈  𝑁 )  →   0   =  if ( 𝑥  =  𝑖 ,   0  ,   0  ) ) | 
						
							| 16 | 15 | mpoeq3dv | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  𝑖  ∈  𝑁 )  →  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦   0  )  =  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  if ( 𝑥  =  𝑖 ,   0  ,   0  ) ) ) | 
						
							| 17 | 16 | fveq2d | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  𝑖  ∈  𝑁 )  →  ( 𝐷 ‘ ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦   0  ) )  =  ( 𝐷 ‘ ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  if ( 𝑥  =  𝑖 ,   0  ,   0  ) ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 19 |  | simpll | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  𝑖  ∈  𝑁 )  →  𝑅  ∈  CRing ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  →  𝑁  ∈  Fin ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  𝑖  ∈  𝑁 )  →  𝑁  ∈  Fin ) | 
						
							| 22 |  | ringmnd | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Mnd ) | 
						
							| 23 | 6 22 | syl | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Mnd ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  →  𝑅  ∈  Mnd ) | 
						
							| 25 | 18 4 | mndidcl | ⊢ ( 𝑅  ∈  Mnd  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 26 | 24 25 | syl | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  𝑖  ∈  𝑁 )  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 28 | 27 | 3ad2ant1 | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  𝑖  ∈  𝑁 )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 29 |  | simpr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  𝑖  ∈  𝑁 )  →  𝑖  ∈  𝑁 ) | 
						
							| 30 | 1 18 4 19 21 28 29 | mdetr0 | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  𝑖  ∈  𝑁 )  →  ( 𝐷 ‘ ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  if ( 𝑥  =  𝑖 ,   0  ,   0  ) ) )  =   0  ) | 
						
							| 31 | 12 17 30 | 3eqtrd | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  𝑖  ∈  𝑁 )  →  ( 𝐷 ‘ 𝑍 )  =   0  ) | 
						
							| 32 | 31 | ex | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  →  ( 𝑖  ∈  𝑁  →  ( 𝐷 ‘ 𝑍 )  =   0  ) ) | 
						
							| 33 | 32 | exlimdv | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  →  ( ∃ 𝑖 𝑖  ∈  𝑁  →  ( 𝐷 ‘ 𝑍 )  =   0  ) ) | 
						
							| 34 | 5 33 | biimtrid | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  →  ( 𝑁  ≠  ∅  →  ( 𝐷 ‘ 𝑍 )  =   0  ) ) | 
						
							| 35 | 34 | 3impia | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin  ∧  𝑁  ≠  ∅ )  →  ( 𝐷 ‘ 𝑍 )  =   0  ) |