Step |
Hyp |
Ref |
Expression |
1 |
|
mdet0.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
2 |
|
mdet0.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
3 |
|
mdet0.z |
⊢ 𝑍 = ( 0g ‘ 𝐴 ) |
4 |
|
mdet0.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
n0 |
⊢ ( 𝑁 ≠ ∅ ↔ ∃ 𝑖 𝑖 ∈ 𝑁 ) |
6 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
7 |
6
|
anim1ci |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
9 |
2 4
|
mat0op |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ 𝐴 ) = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 0 ) ) |
10 |
3 9
|
eqtrid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑍 = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 0 ) ) |
11 |
8 10
|
syl |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → 𝑍 = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 0 ) ) |
12 |
11
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → ( 𝐷 ‘ 𝑍 ) = ( 𝐷 ‘ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 0 ) ) ) |
13 |
|
ifid |
⊢ if ( 𝑥 = 𝑖 , 0 , 0 ) = 0 |
14 |
13
|
eqcomi |
⊢ 0 = if ( 𝑥 = 𝑖 , 0 , 0 ) |
15 |
14
|
a1i |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → 0 = if ( 𝑥 = 𝑖 , 0 , 0 ) ) |
16 |
15
|
mpoeq3dv |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 0 ) = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑖 , 0 , 0 ) ) ) |
17 |
16
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → ( 𝐷 ‘ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 0 ) ) = ( 𝐷 ‘ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑖 , 0 , 0 ) ) ) ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
19 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → 𝑅 ∈ CRing ) |
20 |
|
simpr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → 𝑁 ∈ Fin ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → 𝑁 ∈ Fin ) |
22 |
|
ringmnd |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) |
23 |
6 22
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Mnd ) |
24 |
23
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → 𝑅 ∈ Mnd ) |
25 |
18 4
|
mndidcl |
⊢ ( 𝑅 ∈ Mnd → 0 ∈ ( Base ‘ 𝑅 ) ) |
26 |
24 25
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → 0 ∈ ( Base ‘ 𝑅 ) ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → 0 ∈ ( Base ‘ 𝑅 ) ) |
28 |
27
|
3ad2ant1 |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → 0 ∈ ( Base ‘ 𝑅 ) ) |
29 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) |
30 |
1 18 4 19 21 28 29
|
mdetr0 |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → ( 𝐷 ‘ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑖 , 0 , 0 ) ) ) = 0 ) |
31 |
12 17 30
|
3eqtrd |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → ( 𝐷 ‘ 𝑍 ) = 0 ) |
32 |
31
|
ex |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( 𝑖 ∈ 𝑁 → ( 𝐷 ‘ 𝑍 ) = 0 ) ) |
33 |
32
|
exlimdv |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( ∃ 𝑖 𝑖 ∈ 𝑁 → ( 𝐷 ‘ 𝑍 ) = 0 ) ) |
34 |
5 33
|
syl5bi |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( 𝑁 ≠ ∅ → ( 𝐷 ‘ 𝑍 ) = 0 ) ) |
35 |
34
|
3impia |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ) → ( 𝐷 ‘ 𝑍 ) = 0 ) |