Description: The determinant of the empty matrix on a given ring is the unit of that ring . (Contributed by AV, 28-Feb-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | mdet0fv0 | ⊢ ( 𝑅 ∈ Ring → ( ( ∅ maDet 𝑅 ) ‘ ∅ ) = ( 1r ‘ 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdet0pr | ⊢ ( 𝑅 ∈ Ring → ( ∅ maDet 𝑅 ) = { 〈 ∅ , ( 1r ‘ 𝑅 ) 〉 } ) | |
2 | 1 | fveq1d | ⊢ ( 𝑅 ∈ Ring → ( ( ∅ maDet 𝑅 ) ‘ ∅ ) = ( { 〈 ∅ , ( 1r ‘ 𝑅 ) 〉 } ‘ ∅ ) ) |
3 | 0ex | ⊢ ∅ ∈ V | |
4 | fvex | ⊢ ( 1r ‘ 𝑅 ) ∈ V | |
5 | 3 4 | fvsn | ⊢ ( { 〈 ∅ , ( 1r ‘ 𝑅 ) 〉 } ‘ ∅ ) = ( 1r ‘ 𝑅 ) |
6 | 2 5 | eqtrdi | ⊢ ( 𝑅 ∈ Ring → ( ( ∅ maDet 𝑅 ) ‘ ∅ ) = ( 1r ‘ 𝑅 ) ) |