Metamath Proof Explorer


Theorem mdet0fv0

Description: The determinant of the empty matrix on a given ring is the unit of that ring . (Contributed by AV, 28-Feb-2019)

Ref Expression
Assertion mdet0fv0 ( 𝑅 ∈ Ring → ( ( ∅ maDet 𝑅 ) ‘ ∅ ) = ( 1r𝑅 ) )

Proof

Step Hyp Ref Expression
1 mdet0pr ( 𝑅 ∈ Ring → ( ∅ maDet 𝑅 ) = { ⟨ ∅ , ( 1r𝑅 ) ⟩ } )
2 1 fveq1d ( 𝑅 ∈ Ring → ( ( ∅ maDet 𝑅 ) ‘ ∅ ) = ( { ⟨ ∅ , ( 1r𝑅 ) ⟩ } ‘ ∅ ) )
3 0ex ∅ ∈ V
4 fvex ( 1r𝑅 ) ∈ V
5 3 4 fvsn ( { ⟨ ∅ , ( 1r𝑅 ) ⟩ } ‘ ∅ ) = ( 1r𝑅 )
6 2 5 eqtrdi ( 𝑅 ∈ Ring → ( ( ∅ maDet 𝑅 ) ‘ ∅ ) = ( 1r𝑅 ) )