Metamath Proof Explorer
		
		
		
		Description:  The determinant evaluates to an element of the base ring.  (Contributed by Stefan O'Rear, 9-Sep-2015)  (Revised by AV, 7-Feb-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | mdetf.d | ⊢ 𝐷  =  ( 𝑁  maDet  𝑅 ) | 
					
						|  |  | mdetf.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
					
						|  |  | mdetf.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
					
						|  |  | mdetf.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
				
					|  | Assertion | mdetcl | ⊢  ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐷 ‘ 𝑀 )  ∈  𝐾 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdetf.d | ⊢ 𝐷  =  ( 𝑁  maDet  𝑅 ) | 
						
							| 2 |  | mdetf.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 3 |  | mdetf.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 4 |  | mdetf.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 5 | 1 2 3 4 | mdetf | ⊢ ( 𝑅  ∈  CRing  →  𝐷 : 𝐵 ⟶ 𝐾 ) | 
						
							| 6 | 5 | ffvelcdmda | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐷 ‘ 𝑀 )  ∈  𝐾 ) |